Introduction	Morphology	Linear filters	Detection	Evaluation	Summary

Seminar: Medical Image Processing A robust approach for automatic detection and segmentation of cracks in underground pipeline images

Tim Niemueller <tim@niemueller.de>

Supervisor: Benedikt Fischer Institut für medizinische Informatik, RWTH Aachen

July 13th, 2006

Introduction ●○○○○○○	Morphology	Linear filters	Detection	Evaluation	Summary
Roadmap					

Roadmap

1 Introduction

- 2 Morphology
- 3 Linear filters

4 Detection

5 Evaluation

6 Summary

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation	Summary
Motivation					
Discussed	d papers				

 Shivprakash lyer and Sunil K. Sinha: A robust approach for automatic detection and segmentation of cracks in underground pipeline images. *Image and Vision Computing*, 23:921-933, 2005.

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Motivation					

Discussed papers

- Shivprakash lyer and Sunil K. Sinha: A robust approach for automatic detection and segmentation of cracks in underground pipeline images. *Image and Vision Computing*, 23:921-933, 2005.
- Frederic Zana and Jean-Claude Klein: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. *IEEE Transactions on Image Processing*, 10(7):1010-1019, July 2001.

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation	Summary
Motivation					
The situat	ion				

 Communal sewer networks often one of the biggest infrastructures in an industrialized country (USA: approx. 1 million miles)

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation	Summary
Motivation					
The situr	tion				

 Communal sewer networks often one of the biggest infrastructures in an industrialized country (USA: approx. 1 million miles)

Networks built 50-60 years ago

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation	Summary
Motivation					
The situr	tion				

 Communal sewer networks often one of the biggest infrastructures in an industrialized country (USA: approx. 1 million miles)

Networks built 50-60 years ago

Networks age and deteriorate until they fail

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Motivation					
The citure	tion				

- Communal sewer networks often one of the biggest infrastructures in an industrialized country (USA: approx. 1 million miles)
- Networks built 50-60 years ago

SILUALION

- Networks age and deteriorate until they fail
- Pipes are in general too small for humans

Introduction	Morphology ೦೦೦೦೦೦೦೦೦೦೦೦	Linear filters	Detection	Evaluation	Summary
Motivation					
The stars					

THE SILUATION

- Communal sewer networks often one of the biggest infrastructures in an industrialized country (USA: approx. 1 million miles)
- Networks built 50-60 years ago
- Networks age and deteriorate until they fail
- Pipes are in general too small for humans
- Images can be taken via installed camera or by semi-mobile robots

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation	Summary
Motivation					
The situ					

- Communal sewer networks often one of the biggest infrastructures in an industrialized country (USA: approx. 1 million miles)
- Networks built 50-60 years ago

ne siluation

- Networks age and deteriorate until they fail
- Pipes are in general too small for humans
- Images can be taken via installed camera or by semi-mobile robots

Large underground sewer networks need continuous checks.

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000	000000000000	000	0000	0000000	00
Motivation					
The proble	m				

Continuous check needed to guarantee fitness

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Motivation					
The probl	em				

- Continuous check needed to guarantee fitness
- Currently these checks are done manually

Introduction ○○○●○○○	Morphology 00000000000	Linear filters	Detection	Evaluation	Summary
Motivation					

The problem

- Continuous check needed to guarantee fitness
- Currently these checks are done manually
- Checks highly dependent on experience, concentration and skill level of operator

Introduction ○○○●○○○	Morphology 000000000000	Linear filters	Detection	Evaluation	Summary
Motivation					

The problem

- Continuous check needed to guarantee fitness
- Currently these checks are done manually
- Checks highly dependent on experience, concentration and skill level of operator
- Human operators: subjectivity, fatigue, high costs

Introduction ○○○●○○○	Morphology	Linear filters	Detection	Evaluation	Summary
Motivation					

The problem

- Continuous check needed to guarantee fitness
- Currently these checks are done manually
- Checks highly dependent on experience, concentration and skill level of operator
- Human operators: subjectivity, fatigue, high costs

Reliable *automated defect detection* and classification system desirable to compensate these problems

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000	000	0000	000000	00
Domain					

Large linear portions

Introduction ○○○○●○○	Morphology	Linear filters	Detection	Evaluation	Summary
Domain					

- Large linear portions
- Branch like a tree

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000	000	0000	000000	00
Domain					

- Large linear portions
- Branch like a tree
- Intensity distribution of a crack feature cross-section looks like a specific gaussian curve

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Domain					

- Large linear portions
- Branch like a tree
- Intensity distribution of a crack feature cross-section looks like a specific gaussian curve
- More or less constant width

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Domain					

- Large linear portions
- Branch like a tree
- Intensity distribution of a crack feature cross-section looks like a specific gaussian curve
- More or less constant width
- \blacksquare Retinal vessels: similar features \Rightarrow similar method works to segment vessels

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000					
Domain					

Examples (cracks and retinal vessels)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000					
Domain					

Examples (cracks and retinal vessels)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Domain	0000000000000		0000	000000	00

Examples (cracks and retinal vessels)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000					
Image Processing Pipe	line				

 Usage of mathematical morphology (MM) and linear filters (LF)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000					
Image Processing Pipe	line				

- Usage of mathematical morphology (MM) and linear filters (LF)
- Results in binary crack map

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000					
Image Processing Pipe	line				

- Usage of mathematical morphology (MM) and linear filters (LF)
- Results in binary crack map
- Basic 3-step processing pipeline

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000					
Image Processing Pipe	line				

- Usage of mathematical morphology (MM) and linear filters (LF)
- Results in binary crack map
- Basic 3-step processing pipeline

1 Preprocessing (contrast enhancement)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000					
Image Processing Pipe	line				

- Usage of mathematical morphology (MM) and linear filters (LF)
- Results in binary crack map
- Basic 3-step processing pipeline
- 1 Preprocessing (contrast enhancement)
- 2 Enhancement of cracks (MM and LF)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000					
Image Processing Pipe	line				

- Usage of mathematical morphology (MM) and linear filters (LF)
- Results in binary crack map
- Basic 3-step processing pipeline
- 1 Preprocessing (contrast enhancement)
- 2 Enhancement of cracks (MM and LF)
- **3** Segmentation of cracks (MM alternating filters)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary

2 Morphology

- What is mathematical morphology?
- Morphology operations
- Specific parameters for crack detection

3 Linear filters

4 Detection

5 Evaluation

6 Summary

Introduction	Morphology ●○○○○○○○○○○	Linear filters	Detection 0000	Evaluation	Summary		
What is mathematical morphology?							
Introductio	on						

 Mathematical morphology (MM) developed by Matheron and Serra at the Ecole des Mines in Paris

Introduction	Morphology ●○○○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathemat	ical morphology?				
Introduct	tion				

- Mathematical morphology (MM) developed by Matheron and Serra at the Ecole des Mines in Paris
- Extract features based on a priori knowledge about object geometry

Introduction	Morphology ●○○○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathemati	cal morphology?				
Introduct	ion				

- Mathematical morphology (MM) developed by Matheron and Serra at the Ecole des Mines in Paris
- Extract features based on a priori knowledge about object geometry
- Set-theoretic method providing a quantitative description of geometric structures

Introduction	Morphology ●ooooooooooo	Linear filters	Detection	Evaluation	Summary
What is mathemat	tical morphology?				
Introduc	tion				

- Mathematical morphology (MM) developed by Matheron and Serra at the Ecole des Mines in Paris
- Extract features based on a priori knowledge about object geometry
- Set-theoretic method providing a quantitative description of geometric structures
- Based on expanding and shrinking operations with regard to a given structuring element (knowledge about object)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	00000000000	000	0000	0000000	
What is mathemati	cal morphology?				
Introduct	ion				

- Mathematical morphology (MM) developed by Matheron and Serra at the Ecole des Mines in Paris
- Extract features based on a priori knowledge about object geometry
- Set-theoretic method providing a quantitative description of geometric structures
- Based on expanding and shrinking operations with regard to a given structuring element (knowledge about object)
- Originally for B/W images, extended for gray images (interesting case here)

Introduction	Morphology ○●○○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathemati	ical morphology?				
Definitio	ns				

Images are defined as a function mapping from points to intensity values (here: grayscale, $I_{min} = 0$ and $I_{max} = 255$):

$$F: \mathbb{Z}^2 \mapsto [I_{min}, I_{max}]$$
Introduction	Morphology ○●○○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathemati	cal morphology?				
Definition	nc				

Images are defined as a function mapping from points to intensity values (here: grayscale, $I_{min} = 0$ and $I_{max} = 255$):

 $F: \mathbb{Z}^2 \mapsto [I_{min}, I_{max}]$

Binary *structuring elements* (SE) are defined as a function:

 $B:\mathbb{Z}^2\mapsto [0,1]$

Introduction	Morphology ○●○○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathemat	ical morphology?				
Definitio	nc				

Images are defined as a function mapping from points to intensity values (here: grayscale, $I_{min} = 0$ and $I_{max} = 255$):

$$F: \mathbb{Z}^2 \mapsto [I_{min}, I_{max}]$$

Binary structuring elements (SE) are defined as a function:

$$B:\mathbb{Z}^2\mapsto [0,1]$$

Introduction	Morphology ○○●○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathematical	morphology?				

Important notation specialties for crack detection

General MM:

- Foreground: white
- Background: black

Crack detection MM:

- Foreground: black
- Background: white

Introduction	Morphology ○○●○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathematical	morphology?				

Important notation specialties for crack detection

General MM:

- Foreground: white
- Background: black

Some items change meaning:

- Hole
- Object

Crack detection MM:

- Foreground: black
- Background: white

ObjectHole

Introduction	Morphology ○○●○○○○○○○○	Linear filters	Detection	Evaluation	Summary
What is mathematical	morphology?				

Important notation specialties for crack detection

General MM:

- Foreground: white
- Background: black
- Some items change meaning:
- Hole
- Object

Some operations change meaning:

- Expanding
- Shrinking

Crack detection MM:

- Foreground: black
- Background: white

ObjectHole

- Shrinking
- Expanding

Introduction	Morphology ○○○●○○○○○○○	Linear filters	Detection	Evaluation	Summary
Morphology operation	ns				
Dilation					

$$\delta^{e}_{B}(F)(P_{0}) = \max_{P \in P_{0} \cup e \cdot B(P_{0})}(F(P))$$

Basic *expanding* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F Ìmage
- P₀ Point in image (repeat for every point)

Introduction	Morphology ○○●○○○○○○○	Linear filters	Detection	Evaluation	Summary
Morphology operation	IS				
Dilation					

$$\delta^{e}_{B}(F)(P_{0}) = \max_{P \in P_{0} \cup e \cdot B(P_{0})}(F(P))$$

Basic *expanding* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F Ìmage
- P0 Point in image
 - (repeat for every point)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000000000000000000000000000000				
Morphology operations					

Dilation

$$\delta^{e}_{B}(F)(P_{0}) = \mathsf{max}_{P \in P_{0} \cup e \cdot B(P_{0})}(F(P))$$

Basic *expanding* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F Image
- P₀ Point in image (repeat for every point)

(general, black background, white foreground)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000000000000000000000000000000				
Morphology operations					

Dilation

$$\delta^{\mathsf{e}}_B(F)(P_0) = \max_{P \in P_0 \cup \mathsf{e} \cdot B(P_0)}(F(P))$$

Basic *expanding* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F İmage
- P₀ Point in image (repeat for every point)

(crack detection, white background, black foreground)

Introduction	Morphology ○○○○●○○○○○○○	Linear filters	Detection 0000	Evaluation	Summary
Morphology operations					
Frosion					

$$\varepsilon^{e}_{B}(F)(P_{0}) = \min_{P \in P_{0} \cup e \cdot B(P_{0})}(F(P))$$

Basic *shrinking* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F Ìmage
- P₀ Point in image (repeat for every point)

Introduction	Morphology ○○○●○○○○○○	Linear filters	Detection	Evaluation	Summary
Morphology operation	IS				
Frasion					

$$\varepsilon_B^e(F)(P_0) = \min_{P \in P_0 \cup e \cdot B(P_0)}(F(P))$$

Basic *shrinking* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F Ìmage
- P0 Point in image
 - (repeat for every point)

Introduction	Morphology ○○○●○○○○○○	Linear filters	Detection	Evaluation	Summary
Morphology operation	s				
Erosion					

$$\varepsilon_B^e(F)(P_0) = \min_{P \in P_0 \cup e \cdot B(P_0)}(F(P))$$

Basic *shrinking* operation.

B Structuring element (SE)

- e SE dimension scaling factor
 - (default: e = 1)
- F İmage
- P₀ Point in image (repeat for every point)

(general, black background, white foreground)

Introduction	Morphology ○○○●○○○○○○	Linear filters	Detection	Evaluation	Summary
Morphology operations	5				
- ·					

Erosion

$$\varepsilon_B^{\mathsf{e}}(F)(P_0) = \min_{P \in P_0 \cup e \cdot B(P_0)}(F(P))$$

Basic *shrinking* operation.

- B Structuring element (SE)
- e SE dimension scaling factor
 - (default: e = 1)
- F Image
- P₀ Point in image (repeat for every point)

(crack detection, white background, black foreground)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	00000000000				
Morphology operations					
~ ·					
Opening					

$$\gamma_B^e(F) = \delta_B^e(\varepsilon_B^e(F))$$

Dilation of the erosion

- B Structuring element (SE)
- e SE dimension scaling factor (default: e = 1)

F Image

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operation	s				
0					
Opening					

$$\gamma_B^e(F) = \delta_B^e(\varepsilon_B^e(F))$$

- B Structuring element (SE)
- e SE dimension scaling factor (default: e = 1)

F Image

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations	5				
Opening					

$$\gamma_B^e(F) = \delta_B^e(\varepsilon_B^e(F))$$

- B Structuring element (SE)
- e SE dimension scaling factor (default: e = 1)

F Image

(basic opening by 3×3 square SE: original image)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations	5				
Opening					

$$\gamma_B^e(F) = \delta_B^e(\varepsilon_B^e(F))$$

- B Structuring element (SE)
- e SE dimension scaling factor (default: e = 1)

F Image

(basic opening by 3×3 square SE: eroded)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations	5				
Opening					

$$\gamma_B^e(F) = \delta_B^e(\varepsilon_B^e(F))$$

- B Structuring element (SE)
- e SE dimension scaling factor (default: e = 1)

F Image

(basic opening by 3×3 square SE: eroded and dilated)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operati	ons				
Closing					
<u> </u>					

$$\phi_B^e(F) = \varepsilon_B^e(\delta_B^e(F))$$

Erosion of the dilation

- B Structuring element (SE)
- e SE dimension scaling factor (default: e = 1)

F Image

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations					
Closing					

 $\phi_B^e(F) = \varepsilon_B^e(\delta_B^e(F))$

Erosion of the dilationRemoves small holes

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

F Image

е

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000000000000000000000000000000	000	0000	0000000	00
Morphology operations					
<u> </u>					
Closing					

$$\phi_B^e(F) = \varepsilon_B^e(\delta_B^e(F))$$

Erosion of the dilationRemoves small holes

- B Structuring element (SE)
 e SE dimension scaling fact
 - SE dimension scaling factor (default: e = 1)

F Image

(basic closing by 3×3 square SE: original image)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operation	ons				
<u>.</u>					
Closing					

 $\phi_B^e(F) = \varepsilon_B^e(\delta_B^e(F))$

Erosion of the dilationRemoves small holes

SE dimension scaling factor (default: e = 1)

F Image

(basic closing by 3×3 square SE: dilated)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operation	ons				
<u>.</u>					
Closing					

 $\phi_B^e(F) = \varepsilon_B^e(\delta_B^e(F))$

Erosion of the dilationRemoves small holes

SE dimension scaling factor (default: e = 1)

F Image

е

(basic closing by 3×3 square SE: dilated and eroded)

Introduction	Morphology ○○○○○○●○○○○	Linear filters	Detection 0000	Evaluation	Summary
Morphology operations					
Top-hat					

$$\tau_B^{\mathsf{e}}(\mathsf{F}) = \mathsf{F} - \gamma_B^{\mathsf{e}}(\mathsf{F})$$

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

е

Removes a particular feature from the image

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operation	s				
Top-hat					

$$\tau_B^e(F) = F - \gamma_B^e(F)$$

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

е

Removes a particular feature from the image
 Example: edge detection using top-hat filter

(edge detection by top-hat: original image)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations					
Top-hat					

$$\tau_B^e(F) = F - \gamma_B^e(F)$$

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

е

Removes a particular feature from the image
 Example: edge detection using top-hat filter

(edge detection by top-hat: erosion by 3×3 square)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations					
Top-hat					

$$\tau_B^e(F) = F - \gamma_B^e(F)$$

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

е

Removes a particular feature from the image
 Example: edge detection using top-hat filter

(edge detection by top-hat: opening by 3×3 square)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations	5				
Top-hat					

$$\tau_B^e(F) = F - \gamma_B^e(F)$$

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

е

Removes a particular feature from the image
 Example: edge detection using top-hat filter

(edge detection by top-hat: top-hat with original image)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations					
Top-hat					

$$\tau_B^e(F) = F - \gamma_B^e(F)$$

- B Structuring element (SE)
 - SE dimension scaling factor (default: e = 1)

е

Removes a particular feature from the image
 Example: edge detection using top-hat filter

(edge detection by top-hat: inverted result)

Introduction	Morphology ○○○○○○○●○○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					
<u> </u>					

One of the most common MM techniques

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	0000000000000				
Morphology operations					

- One of the most common MM techniques
- Instead of one image and a SE now two images are used

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations					

- One of the most common MM techniques
- Instead of one image and a SE now two images are used
- Marker image is source image, mask image is max. or min. image (depending on operation)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
	000000000000				
Morphology operations					

- One of the most common MM techniques
- Instead of one image and a SE now two images are used
- Marker image is source image, mask image is max. or min. image (depending on operation)
- Geodesic: Extracts connected components based on distance

Introduction	Morphology ○○○○○○●○○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

- One of the most common MM techniques
- Instead of one image and a SE now two images are used
- Marker image is source image, mask image is max. or min. image (depending on operation)
- Geodesic: Extracts connected components based on distance
- Can be used with different morphological operations

Introduction	Morphology ○○○○○○○○●○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

Geodesic reconstruction by erosion (geodesic closing)

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}\left(\varepsilon_B(F)\right)\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

Introduction	Morphology ○○○○○○○○●○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

Geodesic reconstruction by erosion (geodesic closing)

$$\Phi(F,G) = \varepsilon_{G}^{(n)}(F) = \max\left(G, \varepsilon_{G}^{(n-1)}\left(\varepsilon_{B}(F)\right)\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F)=F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

1 Erode marker image
Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000000000000000000000000000000	000	0000	0000000	
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}(\varepsilon_B(F))\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

Erode marker image

2 Take maximum of eroded image and mask image

Introduction	Morphology ○○○○○○○○●○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}(\varepsilon_B(F))\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

- 1 Erode marker image
- 2 Take maximum of eroded image and mask image
- 3 If image has been changed in this iteration goto 1

Introduction	Morphology ○○○○○○○○●○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}(\varepsilon_B(F))\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

(segment 1 and 4: original image)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000000000000000000000000000000	000	0000	0000000	
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}\left(\varepsilon_B(F)\right)\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)

Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F)=F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

(segment 1 and 4: dilation by linear SE, length = 45 pixel, vertical)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000000000000000000000000000000	000	0000	0000000	
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}(\varepsilon_B(F))\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F)=F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

(segment 1 and 4: marked dilation result)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	000000000000000000000000000000000000000	000	0000	0000000	
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}\left(\varepsilon_B(F)\right)\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)

Erosion

ε

п

$$\varepsilon^{(0)}_{B,G}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

(segment 1 and 4: dilation by linear SE, length = 7, horizontal)

Introduction	Morphology ○○○○○○○○●○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}(\varepsilon_B(F))\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)

Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

(segment 1 and 4: un-marked dilation result)

Introduction	Morphology ○○○○○○○○●○○	Linear filters	Detection	Evaluation	Summary
Morphology operations					

$$\Phi(F,G) = \varepsilon_G^{(n)}(F) = \max\left(G, \varepsilon_G^{(n-1)}\left(\varepsilon_B(F)\right)\right)$$

- B Isotropic structuring element
- F Image (Marker)
- G Image (Mask)
 - Erosion

ε

п

$$\varepsilon_{B,G}^{(0)}(F) = F$$

number of iterations until stability has been reached $(\varepsilon_{B,G}^{(n)}(F) = \varepsilon_{B,G}^{(n+1)}(F)$ holds)

 $\begin{array}{ccccccc}1&8&&&\mathbf{1}\\2&&7&&&\mathbf{4}\\&4&&&\mathbf{4}\\5&&6&&&\end{array}$

(segment 1 and 4: geodesic reconstruction with original as mask)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary		
	000000000000000000000000000000000000000						
Morphology operations							

Geodesic reconstruction by dilation (geodesic opening)

$$\Gamma(F,G) = \delta_G^{(n)}(F) = \min\left(G, \delta_G^{(n-1)}(\delta_B(F))\right)$$

- F Image (Marker)
- G Image (Mask) δ Dilation

$$\delta_{B,G}^{(0)}(F) = I$$

n number of iterations until stability has been reached $(\delta_{B,G}^{(n)}(F) = \delta_{B,G}^{(n+1)}(F)$ holds)

- **1** Dilate marker image
- 2 Take minimum of dilated image and mask image
- 3 If image has been changed in this iteration goto 1

Introduction	Morphology ○○○○○○○○●	Linear filters	Detection	Evaluation	Summary		
Specific parameters for crack detection							
Structuring	g elements						

Based on observation of cracks specific SEs are chosen

Introduction	Morphology ○○○○○○○○●	Linear filters	Detection	Evaluation	Summary
Specific parameters	for crack detection				
<u> </u>					

Based on observation of cracks specific SEs are chosen

Linear SE

Introduction	Morphology ○○○○○○○○●	Linear filters	Detection	Evaluation	Summary			
Specific parameters for crack detection								

Based on observation of cracks specific SEs are chosen

Linear SE

SE length: 12 pixel

Introduction	Morphology ○○○○○○○○●	Linear filters	Detection	Evaluation	Summary			
Specific parameters for crack detection								

- Based on observation of cracks specific SEs are chosen
- Linear SE
- SE length: 12 pixel
- \blacksquare Degree of rotation: every 10° from 0° to 180°

Introduction	Morphology ○○○○○○○○●	Linear filters	Detection	Evaluation	Summary
Specific parameters for	crack detection				

- Based on observation of cracks specific SEs are chosen
- Linear SE
- SE length: 12 pixel
- \blacksquare Degree of rotation: every 10° from 0° to 180°

Introduction	Morphology ○○○○○○○○●	Linear filters	Detection	Evaluation	Summary
Specific parameters for	crack detection				

- Based on observation of cracks specific SEs are chosen
- Linear SE
- SE length: 12 pixel
- Degree of rotation: every 10° from 0° to 180°

Filters have been chosen for dark features

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	0000000000000	000	0000	0000000	00

2 Morphology

3 Linear filters

- What are linear filters?
- Filters used for crack detection

4 Detection

5 Evaluation

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary				
		000							
What are linear filters?									
Linear filte	rs								

 Pictures of zebras and dalmatians both have black and white pixels

Introduction	Morphology	Linear filters ●○○	Detection	Evaluation	Summary			
What are linear filters?								
Linear filte	rs							

- Pictures of zebras and dalmatians both have black and white pixels
- They appear in about the same amount

Introduction	Morphology 000000000000	Linear filters ●○○	Detection	Evaluation	Summary
What are linear filters?					
Linear filte	rs				

- Pictures of zebras and dalmatians both have black and white pixels
- They appear in about the same amount
- Difference in order and characteristic appearance of groups

Introduction	Morphology 000000000000	Linear filters ●○○	Detection	Evaluation	Summary
What are linear filters?					
Linear filte	rs				

- Pictures of zebras and dalmatians both have black and white pixels
- They appear in about the same amount
- Difference in order and characteristic appearance of groups
- Linear filters are means to detect these specific characteristics

Introduction	Morphology 000000000000	Linear filters ●○○	Detection	Evaluation	Summary
What are linear filters?	?				
Linear filte	rs				

- Pictures of zebras and dalmatians both have black and white pixels
- They appear in about the same amount
- Difference in order and characteristic appearance of groups
- Linear filters are means to detect these specific characteristics
- Each pixel is set to a weighted sum of its and its neighbours' values (convolution)

Introduction	Morphology 000000000000	Linear filters ●○○	Detection	Evaluation	Summary
What are linear filters?	?				
Linear filte	rs				

- Pictures of zebras and dalmatians both have black and white pixels
- They appear in about the same amount
- Difference in order and characteristic appearance of groups
- Linear filters are means to detect these specific characteristics
- Each pixel is set to a weighted sum of its and its neighbours' values (convolution)
- Weights defined as matrix (kernel)

Introduction	Morphology 000000000000	Linear filters ●○○	Detection	Evaluation	Summary
What are linear filters?	?				
Linear filte	rs				

- Pictures of zebras and dalmatians both have black and white pixels
- They appear in about the same amount
- Difference in order and characteristic appearance of groups
- Linear filters are means to detect these specific characteristics
- Each pixel is set to a weighted sum of its and its neighbours' values (convolution)
- Weights defined as matrix (kernel)
- Here: edge detection

0000000		Detection	Evaluation	Summary
Filters used for crack de	etection	0000	0000000	
Gaussian				
Smooth	iing an image	Geussia construction construct	in kernel $f(x,y) = \frac{1}{2\pi\sigma^2} exp\left(-\frac{1}{2\pi\sigma^2}\right)$	$\frac{2^2 + y^2}{2\sigma^2}$
			``	ŕ

Introduction	Morphology	Linear filters ○●○	Detection 0000	Evaluation	Summary
Filters used for crack	<pre>< detection</pre>				
Gaussian					
 Smoo Discre Gauss 	thing an image ete Gaussian ke sian function	ernel from	Gaussia Gaussia $Gaussia Gaussia Gaussia Gaussia Gaussia Gaussia Gaussia Gaussia Gaussia$	$G_{1} = \begin{bmatrix} \frac{1}{\frac{1}{16}} & \frac{2}{16} \\ \frac{1}{16} & \frac{1}{16} \end{bmatrix}$	$\frac{2^2 + y^2}{2\sigma^2}$

Introduction	Morphology	Linear filters ○●○	Detection	Evaluation	Summary
Filters used for cra	ock detection				
Gaussian					
C			Gaussia	in kernel	
Smo	othing an image	2			-
Disc	rete Gaussian ke	ernel from	87.0 84.0	E 🛕	0.16 0.54 0.12 0.1 0.08
Gaus	ssian function		0.1		0.06
			0.02 0		
	y · · · · · · · · ·	• 17 7 .		a a a a a a a a a a a a a a a a a a a	
				,	
			$\mathcal{G}_{\sigma}(x)$	$(x, y) = \frac{1}{2\pi\sigma^2} exp\left(-\frac{1}{2\pi\sigma^2}\right)$	$\left(\frac{x^2+y^2}{2\sigma^2}\right)$
	· · · · · · · · · · · · · · · · · · ·			Γ 1 2	1 1
	(a) Original (b) Caussian		$G_1 = \begin{vmatrix} \overline{16} & \overline{16} \\ \overline{16} & \overline{4} \\ \overline{16} & \overline{4} \end{vmatrix}$	
	(a) Original (b) Gaussian		$\frac{1}{16}$ $\frac{12}{16}$	$\frac{1}{16}$

Introduction	Morphology 000000000000	Linear filters ○○●	Detection	Evaluation	Summary			
Filters used for crack detection								

Laplacian of Gaussian

Classic method for edge detection

Laplacian of Gaussian kernel

Introduction	Morphology 000000000000	Linear filters ○○●	Detection	Evaluation	Summary
Filters used for crack detection					

Laplacian of Gaussian

- Classic method for edge detection
- Laplacian operator: $(\nabla^2 f)(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

0000000	oooooooooooooooo	CO●	0000	evaluation 0000000	00				
Filters used for crack	detection								
Laplacian	Laplacian of Gaussian								
 Classie Laplac $(\nabla^2 f)$ Nature laplac LoG^w_{\sigma} (F core) 	c method for e cian operator: $f(x, y) = \frac{\partial^2 f}{\partial x^2} +$ al to smooth b ian \Rightarrow Gaussia $(F) = F \circ L_{\sigma}^w$ nvolved with L	dge detection - ∂²f efore applying n as function)	$\mathcal{L}_{\sigma} = \int_{1}^{2} \mathcal{L}_{\sigma} = \int_{1}^{2} \mathcal{L}_{\sigma}$	F Gaussian kernel $\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} exp\left(-\frac{x}{(4)}\right)$ $\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} exp\left(-\frac{x}{(4)}\right)$ $\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} exp\left(-\frac{x}{(4)}\right)$ $\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} exp\left(-\frac{x}{(4)}\right)$	$ \begin{bmatrix} 2 + y^{2} \\ 3 + 4 \\ 4 + 4$				

0000000	000000000000000000000000000000000000000		0000	0000000	00
Filters used for crack	detection				
Laplacian	of Gaussiar	ı			
Classic Laplac $(\nabla^2 f)$ Natura laplaci	the method for end of the formula is the method formula is the method of the method o	dge detection $\frac{\partial^2 f}{\partial y^2}$ efore applying n as function	Laplacian of	Gaussian kernel	40 40 40 40 40 40 40 40 40 40 40 40 40 4
LoG ^w _σ ((F con	$(F) = F \circ L_{\sigma}^{w}$ volved with L		$\mathcal{L}_{\sigma} = \frac{0}{2}$ $\mathcal{L}_{1}^{5} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$	$\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} exp\left(-\frac{(x^2)}{\sigma^4}\right) exp\left(-\frac{(x^2)}{\sigma^$	$ \begin{bmatrix} 2 + y^2 \\ 2\sigma^2 \end{bmatrix} $ $ \begin{bmatrix} 3 & -1 \\ -3 \\ -3 \\ -3 \\ 3 & -1 \end{bmatrix} $

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary

1 Introduction

2 Morphology

3 Linear filters

4 DetectionDetection procedure

5 Evaluation

6 Summary

Introduction	Morphology	Linear filters	Detection ●○○○	Evaluation	Summary
Detection procedure					

Processing pipeline structure

- Usage of mathematical morphology (MM) and linear filters (LF)
- Results in binary crack map
- Basic 3-step processing pipeline
- **1** Preprocessing (contrast enhancement)
- 2 Enhancement of cracks (MM and LF)
- 3 Segmentation of cracks (MM alternating filters)

Introduction	Morphology 000000000000	Linear filters	Detection ○●○○	Evaluation	Summary
Detection procedure					

Preprocessing

Goal: Enhance contrast between cracks and background

Preprocessing pipeline

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	0000000000000	000	0000	0000000	00
Detection procedure					

Preprocessing

- Goal: Enhance contrast between cracks and background
- **0** Original grayscale image

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
0000000	0000000000000	000	0000	0000000	00
Detection procedure					

Preprocessing

- Goal: Enhance contrast between cracks and background
- Original grayscale imageMedian (15 × 15)

Preprocessing pipeline

Introduction	Morphology	Linear filters	Detection ○●○○	Evaluation	Summary
Detection procedure					

Preprocessing

- Goal: Enhance contrast between cracks and background
- 0 Original grayscale image
- **1** Median (15 × 15)
- 2 Compare foreground (original) and background (median) image, take minimum

Preprocessing pipeline

Introduction	Morphology 00000000000	Linear filters	Detection ○○●○	Evaluation	Summary
Detection procedure					

Introduction	Morphology 000000000000	Linear filters	Detection ○○●○	Evaluation	Summary
Detection procedure					

1 Closing by Reconstruction

$$F_{Cl} = \Phi(\min_{i=1,...,18} \{\phi_{B_i}(F_0)\})$$

Introduction	Morphology	Linear filters	Detection ○○●○	Evaluation	Summary
Detection procedure					

1 Closing by Reconstruction

$$F_{Cl} = \Phi(\min_{i=1,...,18}{\phi_{B_i}(F_0)})$$

Enhancement pipeline

Introduction	Morphology 000000000000	Linear filters	Detection ○○●○	Evaluation	Summary
Detection procedure					

- Closing by Reconstruction $F_{Cl} = \Phi(\min_{i=1,...,18}{\phi_{B_i}(F_0)})$
- 2 Sum of top-hats $F_{th} = \sum_{i=0}^{17} \tau_{B_i} (F_{Cl}) = \sum_{i=0}^{17} (F_{Cl} - \gamma_{B_i}(F))$ Wrong formula (white objects)!

Introduction	Morphology 00000000000	Linear filters	Detection ○○●○	Evaluation	Summary
Detection procedure					

- 1 Closing by Reconstruction $F_{Cl} = \Phi(\min_{i=1,...,18} \{\phi_{B_i}(F_0)\})$
- 2 Sum of top-hats

$$F_{th} = \left(\sum_{i=0}^{17} \left(\phi_{B_i}(F) - F_{Cl}\right)\right)^{-1}$$

Very noisy results, omitted.

Introduction	Morphology 000000000000	Linear filters	Detection ○○●○	Evaluation	Summary
Detection procedure					

1 Closing by Reconstruction

$$F_{Cl} = \Phi(\min_{i=1,\dots,18} \{ \phi_{B_i}(F_0) \})$$

2 Sum of top-hats

$$F_{th} = \left(\sum_{i=0}^{17} \left(\phi_{B_i}(F) - F_{CI}\right)\right)^{-}$$

Very noisy results, omitted.

3 Laplacian of Gaussian $F_{lap} = LoG_2^{12}(F_{Cl})$

Introduction	Morphology	Linear filters	Detection 000●	Evaluation	Summary
Detection procedure					

Final segmentation of cracks

Segmentation pipeline

Introduction	Morphology	Linear filters	Detection 000●	Evaluation	Summary
Detection procedure					

Final segmentation of cracks

Alternating MM filters

Introduction	Morphology	Linear filters	Detection ○○○●	Evaluation	Summary
Detection procedure					

- Final segmentation of cracksAlternating MM filters
- 1 Closing by Reconstruction $F_1 = \Phi \left(\min_{i=1,...,18} \{ \phi_{B_i}(F_{lap}) \} \right)$

Introduction	Morphology	Linear filters	Detection 000●	Evaluation	Summary
Detection procedure					

- Final segmentation of cracksAlternating MM filters
- 1 Closing by Reconstruction $F_1 = \Phi \left(\min_{i=1,...,18} \{ \phi_{B_i}(F_{lap}) \} \right)$

Introduction	Morphology	Linear filters	Detection ○○○●	Evaluation	Summary
Detection procedure					

- Final segmentation of cracksAlternating MM filters
- 1 Closing by Reconstruction $F_1 = \Phi \left(\min_{i=1,...,18} \{ \phi_{B_i}(F_{lap}) \} \right)$
- 2 Opening by Reconstruction $F_2 = \Gamma \left(\max_{i=1,\dots,18} \{ \gamma_{B_i}(F_1) \} \right)$

Introduction	Morphology 000000000000	Linear filters	Detection ○○○●	Evaluation	Summary
Detection procedure					

- Final segmentation of cracksAlternating MM filters
- Closing by Reconstruction $F_1 = \Phi(\min_{i=1,...,18}{\phi_{B_i}(F_{lap})})$
- 2 Opening by Reconstruction $F_2 = \Gamma \left(\max_{i=1,\dots,18} \{ \gamma_{B_i}(F_1) \} \right)$
- 3 Large closing with double scale $F_{final} = \left(\min_{i=1,\dots,18} \{\phi_{B_i}^2(F_2)\}\right)$

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary

- 2 Morphology
- 3 Linear filters

4 Detection

5 Evaluation

- Evaluation results from the paper
- Experiments
- Evaluation of the paper

6 Summary

Introduction 0000000 Evaluation results fr	Morphology 0000000000000 rom the paper	Linear filters	Detection 0000	Evaluation ●0000000	Summary 00
Criteria fo	or paramete	r selection			

Parameters: S length of SE in pixels, D degree of rotations

Introduction	Morphology 00000000000	Linear filters	Detection	Evaluation •000000	Summary		
Evaluation results from the paper							
Criteria for	parameter	selection					

Parameters: S length of SE in pixels, D degree of rotations
Goal: false positive rate below 7%, false negative rate below 2%

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation ●000000	Summary			
Evaluation results from the paper								

- Parameters: S length of SE in pixels, D degree of rotations
 Goal: false positive rate below 7%, false negative rate below 2%
- Probability of detection

Introduction	Morphology 000000000000	Linear filters	Detection 0000	Evaluation ●000000	Summary
Evaluation results from	the paper				

- Parameters: *S* length of SE in pixels, *D* degree of rotations
- \blacksquare Goal: false positive rate below 7%, false negative rate below 2%
- Probability of false positive (crack detected where is none)

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation ●○○○○○○	Summary			
Evaluation results from the paper								

- Parameters: *S* length of SE in pixels, *D* degree of rotations
- \blacksquare Goal: false positive rate below 7%, false negative rate below 2%
- Probability of false negative (crack not detected)

Introduction	Morphology	Linear filters	Detection	Evaluation ●○○○○○○	Summary
Evaluation results from	the paper				

- Probability of detection
- Probability of false positive
- Probability of false negative

Introduction	Morphology	Linear filters	Detection	Evaluation ●000000	Summary
Evaluation results from	the paper				

- Probability of detection
- Probability of false positive
- Probability of false negative

Introduction	Morphology	Linear filters	Detection	Evaluation ●000000	Summary
Evaluation results from	the paper				

- Probability of detection
- Probability of false positive
- Probability of false negative
- Best parameters in paper: SE length S = 12 pixel and a degree of rotations D = every 10°

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
				000000	
Evaluation results from	the paper				

Comparison based on individual evaluation of approaches

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
				000000	
Evaluation results from	the paper				

- Comparison based on individual evaluation of approaches
- Ground truth by manually segmenting test images (reference)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary	
				000000		
Evaluation results from the paper						

- Comparison based on individual evaluation of approaches
- Ground truth by manually segmenting test images (reference)
- Completeness $\approx \frac{\# \text{ matched crack pixels of ref.}}{\# \text{ crack pixels of reference}}$ (optimal: 1)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary	
0000000	000000000000	000	0000	000000	00	
Evaluation results from the paper						

- Comparison based on individual evaluation of approaches
- Ground truth by manually segmenting test images (reference)
- Completeness $\approx \frac{\# \text{ matched crack pixels of ref.}}{\# \text{ crack pixels of reference}}$ (optimal: 1)
- Correctness $\approx \frac{\# \text{ matched crack pixels of extraction}}{\# \text{ crack pixels of extraction}}$ (optimal: 1)

Introduction	Morphology	Linear filters	Detection	Evaluation ○●○○○○○	Summary
Evaluation results from	the paper				

- Comparison based on individual evaluation of approaches
- Ground truth by manually segmenting test images (reference)
- Completeness $\approx \frac{\# \text{ matched crack pixels of ref.}}{\# \text{ crack pixels of reference}}$ (optimal: 1)
- Correctness $\approx \frac{\# \text{ matched crack pixels of extraction}}{\# \text{ crack pixels of extraction}}$ (optimal: 1)

Redundancy

 $\approx \frac{\# \text{ matched crack pixels of extr.}-\# \text{ matched pixels of ref.}}{\# \text{ crack pixels of extraction}} \text{ (optimal: 0)}$

Introduction	Morphology	Linear filters	Detection	Evaluation ○●○○○○○	Summary
Evaluation results from	the paper				

- Comparison based on individual evaluation of approaches
- Ground truth by manually segmenting test images (reference)
- Completeness $\approx \frac{\# \text{ matched crack pixels of ref.}}{\# \text{ crack pixels of reference}}$ (optimal: 1)
- Correctness $\approx \frac{\# \text{ matched crack pixels of extraction}}{\# \text{ crack pixels of extraction}}$ (optimal: 1)
- Redundancy
 \$\approx \frac{\pm matched crack pixels of extr.-\pm matched pixels of ref.}{\pm crack pixels of extraction}\$ (optimal:
 0)
- Quality $\approx \frac{\text{compl-corr}}{\text{compl-compl-corr+corr}}$ (optimal: 1)

Introduction	Morphology	Linear filters	Detection	Evaluation ○●○○○○○	Summary	
Evaluation results from the paper						

- Comparison based on individual evaluation of approaches
- Ground truth by manually segmenting test images (reference)
- Completeness $\approx \frac{\# \text{ matched crack pixels of ref.}}{\# \text{ crack pixels of reference}}$ (optimal: 1)
- Correctness $\approx \frac{\# \text{ matched crack pixels of extraction}}{\# \text{ crack pixels of extraction}}$ (optimal: 1)
- Redundancy
 \$\approx \frac{\pm matched crack pixels of extr.-\pm matched pixels of ref.}{\pm crack pixels of extraction}\$ (optimal:
 0)
- Quality $\approx \frac{\text{compl-corr}}{\text{compl-compl-corr+corr}}$ (optimal: 1)

Parameters for other approaches not mentioned in paper

Introduction	Morphology 00000000000	Linear filters	Detection	Evaluation	Summary	
Evaluation results from the paper						

Different approaches

Otsu's thresholding

- Apply thresholds to detect cracks
- Separates a number of intensity classes
- Uses statistical methods to minimize variance in a class and at the same time maximize the variance between the classes

Fig. 13. Edge detection algorithms on crack pattern image: (a) original image, (b) Otsu's thresholding (c) Canny's edge detector, and (d) proposed approach.

Introduction	Morphology	Linear filters	Detection	Evaluation ○○●○○○○	Summary	
Evaluation results from the paper						

Different approaches

Otsu's thresholding

- Apply thresholds to detect cracks
- Separates a number of intensity classes
- Uses statistical methods to minimize variance in a class and at the same time maximize the variance between the classes

Canny's edge detection

- Detect edges in the image between crack and background
- Uses linear filters (Gaussian and Sobel)
- Apply Gaussian, then apply a series of gradient filters to detect edges in different directions

Fig. 13. Edge detection algorithms on crack pattern image: (a) original image, (b) Otsu's thresholding (c) Canny's edge detector, and (d) proposed approach.

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary	
0000000		000	0000	0000000		
Evaluation results from the paper						

- Otsu's thresholding
- Canny's edge detector
- No information about parameters in paper

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary	
Evaluation results from the paper						

Paper approach

Class	Cracks	Background	Color
Completeness	0.95	0.88	0.90
Correctness	0.98	0.94	0.91
Quality	0.93	0.83	0.83
Redundancy	0.00	-0.01	0.00

- Otsu's thresholding
- Canny's edge detector
- No information about parameters in paper

Introduction	Morphology	Linear filters	Detection	Evaluation 000●000	Summary		
Evaluation results from the paper							

- Otsu's thresholding
- Canny's edge detector
- No information about parameters in paper

Paper approach

Class	Cracks	Background	Color
Completeness	0.95	0.88	0.90
Correctness	0.98	0.94	0.91
Quality	0.93	0.83	0.83
Redundancy	0.00	-0.01	0.00

Otsu's thresholding

Class	Cracks	Background	Color
Completeness	0.98	0.61	0.62
Correctness	0.37	0.45	0.08
Quality	0.37	0.35	0.08
Redundancy	0.22	0.23	0.24

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
Evaluation results from	the paper				

- Otsu's thresholding
- Canny's edge detector
- No information about parameters in paper

Paper approach

Class	Cracks	Background	Color
Completeness	0.95	0.88	0.90
Correctness	0.98	0.94	0.91
Quality	0.93	0.83	0.83
Redundancy	0.00	-0.01	0.00

Otsu's thresholding

Class	Cracks	Background	Color
Completeness	0.98	0.61	0.62
Correctness	0.37	0.45	0.08
Quality	0.37	0.35	0.08
Redundancy	0.22	0.23	0.24

Canny's edge detector

Class	Cracks	Background	Color
Completeness	0.92	0.61	0.62
Correctness	0.20	0.44	0.07
Quality	0.20	0.34	0.07
Redundancy	0.15	0.17	0.14

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary
000000	000000000000000000000000000000000000000	000	0000	0000000	
Evaluation results from	the paper				

- Otsu's thresholding
- Canny's edge detector
- No information about parameters in paper
- Very good evaluation results for proposed method in paper (not verified)

Paper approach

Class	Cracks	Background	Color
Completeness	0.95	0.88	0.90
Correctness	0.98	0.94	0.91
Quality	0.93	0.83	0.83
Redundancy	0.00	-0.01	0.00

Otsu's thresholding

Class	Cracks	Background	Color
Completeness	0.98	0.61	0.62
Correctness	0.37	0.45	0.08
Quality	0.37	0.35	0.08
Redundancy	0.22	0.23	0.24

Canny's edge detector

Class	Cracks	Background	Color		
Completeness	0.92	0.61	0.62		
Correctness	0.20	0.44	0.07		
Quality	0.20	0.34	0.07		
Redundancy	0.15	0.17	0.14		
Introduction	Morphology	Linear filters	Detection	Evaluation ○○○○●○○	Summary
--------------	------------	----------------	-----------	-----------------------	---------
				0000000	
Experiments					

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation ○○○○●○○	Summary
Experiments					

 Implemented in FireVision RoboCup vision framework from AllemaniACs RoboCup team

Introduction	Morphology	Linear filters	Detection	Evaluation ○○○○●○○	Summary
Experiments					

- Implemented in FireVision RoboCup vision framework from AllemaniACs RoboCup team
- Parameters adapted to sample images supplied by Institut für medizinische Informatik

Introduction	Morphology	Linear filters	Detection	Evaluation ○○○○●○○	Summary
Experiments					

- Implemented in FireVision RoboCup vision framework from AllemaniACs RoboCup team
- Parameters adapted to sample images supplied by Institut für medizinische Informatik
- Revealed several pieces of missing information and errors

Introduction	Morphology 00000000000	Linear filters	Detection	Evaluation ○○○○●○	Summary	
Evaluation of the paper						
Zana and I	Klein					

Basically the template of the discussed paper

Introduction	Morphology 000000000000	Linear filters	Detection 0000	Evaluation ○○○○●○	Summary
Evaluation of the pape	r				
Zana and I	Klein				

- Basically the template of the discussed paper
- Proposed algorithm the same, just extracts brightest part of image

Introduction	Morphology 000000000000	Linear filters	Detection 0000	Evaluation ○○○○●○	Summary
Evaluation of the pape	r				
Zana and I	Klein				

- Basically the template of the discussed paper
- Proposed algorithm the same, just extracts brightest part of image
- More evaluation in discussed paper

Introduction	Morphology 000000000000	Linear filters	Detection 0000	Evaluation ○○○○●○	Summary
Evaluation of the pape	r				
Zana and I	Klein				

- Basically the template of the discussed paper
- Proposed algorithm the same, just extracts brightest part of image
- More evaluation in discussed paper
- Discussed paper very similar

Introduction	Morphology	Linear filters	Detection	Evaluation ○○○○○●	Summary
Evaluation of the pape	r				
Pros and C	Cons				

Some information not copied over from ZK paper

Introduction	Morphology	Linear filters	Detection	Evaluation ○○○○○●	Summary
Evaluation of the pap	er				
Pros and (Cons				

- Some information not copied over from ZK paper
- Wrong formulas (i.e. sum of top-hats)

Introduction	Morphology	Linear filters	Detection	Evaluation ○○○○○●	Summary
Evaluation of the pa	per				
Pros and	Cons				

- Some information not copied over from ZK paper
- Wrong formulas (i.e. sum of top-hats)
- Missing information: image sizes, typical crack length/width, parameters of other algorithms in evaluation, ...

Introduction	Morphology ೦೦೦೦೦೦೦೦೦೦೦	Linear filters	Detection	Evaluation ○○○○○●	Summary
Evaluation of the	paper				

- Some information not copied over from ZK paper
- Wrong formulas (i.e. sum of top-hats)
- Missing information: image sizes, typical crack length/width, parameters of other algorithms in evaluation, ...
- No quantitative data about typical human detection and error rates

Introduction	Morphology 000000000000	Linear filters	Detection	Evaluation ○○○○○●	Summary
Evaluation of the p	paper				

- Some information not copied over from ZK paper
- Wrong formulas (i.e. sum of top-hats)
- Missing information: image sizes, typical crack length/width, parameters of other algorithms in evaluation, ...
- No quantitative data about typical human detection and error rates
- Hany pointers to interesting literature

Introduction	Morphology	Linear filters	Detection 0000	Evaluation ○○○○○●	Summary
Evaluation of the	paper				

- Some information not copied over from ZK paper
- Wrong formulas (i.e. sum of top-hats)
- Missing information: image sizes, typical crack length/width, parameters of other algorithms in evaluation, ...
- No quantitative data about typical human detection and error rates
- H Many pointers to interesting literature
- Basics easy to reproduce

Introduction	Morphology ೦೦೦೦೦೦೦೦೦೦೦೦	Linear filters	Detection	Evaluation ○○○○○●	Summary
Evaluation of the	paper				

- Some information not copied over from ZK paper
- Wrong formulas (i.e. sum of top-hats)
- Missing information: image sizes, typical crack length/width, parameters of other algorithms in evaluation, ...
- No quantitative data about typical human detection and error rates
- H Many pointers to interesting literature
- Basics easy to reproduce
- Detailed evaluation section

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary

1 Introduction

2 Morphology

3 Linear filters

4 Detection

5 Evaluation

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary ●○
Conclusion					

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary ●○
Conclusion					

- Method to detect and segment cracks in underground pipeline images
- Presented approach uses mathematical morphology and curvature evaluation and makes use of a priori knowledge about crack structures

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary ●○
Conclusion					

- Method to detect and segment cracks in underground pipeline images
- Presented approach uses mathematical morphology and curvature evaluation and makes use of a priori knowledge about crack structures
- Evaluation has shown that the presented approach has good detection rates and low error rates (not verified)

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary ●○
Conclusion					

- Method to detect and segment cracks in underground pipeline images
- Presented approach uses mathematical morphology and curvature evaluation and makes use of a priori knowledge about crack structures
- Evaluation has shown that the presented approach has good detection rates and low error rates (not verified)
- Paper is derived from another paper and very similar

Introduction	Morphology	Linear filters	Detection	Evaluation	Summary ○●
End of Talk					

Questions?

Information compiled at http://www.niemueller.de/uni/crackdet/