
Rheinisch-Westfälische Technische Hochschule Aachen
Lehrstuhl für Informatik IV
Prof. Dr. rer. nat. Otto Spaniol

KOMMUNIKATION UND VERTEILTE SYSTEME

PROF. DR. OTTO SPANIOL

LEHRSTUHL
INFORMATIK 4FÜR

Instant Networking and
Dynamic Service Discovey

Seminar: Ubiquitos Computing
WS 2005/2006

Tim Niemueller
Matriculation number: 236104

Supervisor: Karl-Heinz Krempels
Lehrstuhl für Informatik IV, RWTH Aachen

License: GNU Free Documentation License

Abstract

In today’s mobile world inter-machine communication has become the key to information
exchange - be it file transfers, chats or web surfing. Until now if you wanted to work in an ad-hoc
network with a few peers you had to set most (if not all) information by hand. Then you exchanged
information for the services you wanted to use. So at best networking was an annoyance, at worst
it was a show stopper.

Zero Configuration Networking aims to solve that problem by defining a set of protocols
that can be used to assign IP addresses automatically, resolve names and discover services. This
seminar paper describes several candidates to accomplish these tasks and gives reasons for a
specific set of protocols, namely IPv4 Local-Link Addressing, Multicast DNS and DNS-based
Service Discovery.

2

Contents

1 Introduction 5

2 Instant Networking 6

2.1 Networking parameters . 6

2.1.1 Internet Protocol . 6

2.2 Managed Network . 7

2.2.1 Dynamic Host Configuration Protocol . 7

2.3 Ad-hoc Network . 9

2.3.1 Link-Local IPv4 addressing . 9

3 Name Resolution in Ad-hoc Networks 11

3.1 Multicast networking . 11

3.2 Link-Local Multicast Name Resolution . 12

3.3 Multicast DNS . 12

3.3.1 Name Reservation . 13

3.3.2 Querying Information . 13

3.3.3 Caching . 14

4 Dynamic Service Discovery 14

4.1 Universal Plug and Play (UPnP) . 15

4.2 Jini . 15

4.3 Service Location Protocol (SLP) . 16

4.4 DNS-based Service Discovery (DNS-SD) . 17

4.4.1 Protocol Overview . 17

4.4.2 DNS-SD in Ad-hoc Networks . 19

4.4.3 Traffic Reduction . 19

4.4.4 Service Registration . 20

3

5 Comparison 20
5.1 Name Resolution . 20

5.2 Service Discovery . 21

6 Conclusion 24

List of Algorithms
1 Link-Local Address selection . 11

4

1 Introduction

In today’s mobile world inter-machine communication has become the key to information exchange
- be it file transfers, chats or web surfing.

Until now if you wanted to work in an ad-hoc network with a few peers you had to set most (if not all)
information by hand. You agreed on an IP subnet and assigned IP addresses to the hosts. Then you
exchanged information for the services you wanted to use. In best cases these were some networking
protocols that had inherent discovery features like SMB or AppleTalk. In worst cases someone ran
a FTP server and gave the access information like IP address and port to the other users (this is a
quite common procedure if Unix users meet somewhere to exchange files, unfortunately). So at best
networking was an annoyance, at worst it was a show stopper.

There comes Zero Configuration Networking into the arena (ZeroConf). ZeroConf claims to solve
these issues. It describes a set of standards (or proposed standards) that will make networking an
experience. It includes how basic addressing settings are negotiated, names are resolved and services
discovered on the network.

Today the basis for almost all networking is the Internet Protocol (IP) mostly applied on IEEE 802
networks (including cabled Ethernet and wireless LAN). IP provides the machines with a logical
addressing framework on the low-level machine addressing (ARP).

In corporate and managed networks this is not much of a problem. There is usually a server running
distributing IP configuration data via the Dynamic Host Configuration Protocol (DHCP). But in ad-
hoc networks this infrastructure is usually not available and thus there is a need for a way to agree on
IP address information in a peer-to-peer fashion. This is described in the section Instant Networking.

Of course the user should not be embarrassed by still having to type that IP address for anything he
does on the network. For this reason in the section Name Resolution we describe two methods for
resolving names of hosts on the local network without a central name server.

After the addressing information has been set the user needs to know which machines offer what kind
of services (without having to know the host name where the service can be found). The knowledge
about the available services is up to now usually distributed from the administrator to user teaching
session – by mouth. What is missing is a general method for discovering services that are currently
available. This starts from the problem of finding a printer to more sophisticated problems like au-
tomated cluster configuration with a fail-over behavior. In the section Service Discovery we will
describe four different protocols that fulfill this task.

In the section Comparison we will compare the different approaches for name resolution and service
discovery in terms of dispersion in the market and technical benefits.

Finally in the Conclusion we are going to argue for a specific sets of protocols that suite the needs of
ZeroConf and that are in general considered to be the protocols of the ZeroConf suite.

5

2 Instant Networking

In this section we describe two standardized approaches of automatically configuring a host in a net-
work. We are first going to discuss how this information is retrieved on networks where infrastructure
is available. We will see that it is clear that it is insensible and in fact in common cases harmful to
use that kind of service in an ad-hoc network. This leads then to IPv4 link-local addresses for ad-hoc
networks.

2.1 Networking parameters

For two hosts to be able to communicate with each other the basic information they need is addressing
information. In Ethernet these are defined with the media access control (MAC) as MAC addresses on
the physical and data link layers of the OSI (Open Systems Interconnection) model. These addresses
are only valid for machines that are physically connected to the same physical network segment which
can only be extended by Ethernet bridging. So another layer is needed for addressing beyond the local
network scope.

2.1.1 Internet Protocol

The Internet Protocol (IP) is the basis for almost all modern networking. It defines a header for
data packets followed by a data blocked, which is formatted depending on the protocol field. In this
document we will look at IPv4, version 4 of the IP.

The basic information like addressing is defined in the IP header (see table 1). The source and des-
tination address are of special interest here. They define the origin and the destination of a packet
sent over the network. Assume a simple network where every host has exactly one network interface.
Then each of these interfaces on the network needs a unique network address. The Time-to-live (TTL)
field will later be used to give an alternative interpretation of the link-local notion. The TTL can be
considered as a maximum hop-count (in fact it is labeled with this in IPv6). The sending host sets
an initial TTL. Every router this packet passes decreases the TTL by one. If the TTL reaches 0 after

0 4 8 12 16 20 24 31
Version IHL Type of Service Length

Identification Flags Fragment Offset
TTL Protocol Checksum

Source IP Address
Destination IP Address

Options

Table 1: IP header

6

decreasing it the packet is dropped and not send any further. This is use to avoid deadlocks of packets
floating around the network forever due to misconfigured routers.

For more information about IP addresses confer [Pos] and [FLYV93]. If we talk about the IP protocol
we now always link to both documents. Some properties that are specifically interesting:

• IP addresses are unique on the local network, although they do not have to be globally unique.

• For the routing decision over which network a specific packet should be sent a subnet mask is
needed.

• For easier usage by human beings the Domain Name System (DNS) has been established which
provides mappings from names to IP addresses

• To be able to access machines outside the local network gateways are used, gateways may
either route traffic for a specific network or act as a default gateway for all traffic that cannot be
reached otherwise

The MAC address of a network adapter is fixed and set during the production process and should not
be changed afterwards. Since MAC addresses are organized in ranges assigned to specific vendors
global uniqueness can be guaranteed (as long as nobody changes his MAC address which is strongly
discouraged). As mentioned above the IP protocol uses subnet masks to divide the address range into
logical sections to divide the address range into multiple networks. So the IP address is a logical
address. It is set for a specific host in a specific network. If the host moves through several networks
(for example a laptop) it needs different logical addresses. These addresses are thus dependent on the
network a host is operating in.

2.2 Managed Network

A managed network is governed by a single group of administrators that keep the network running
and decide on the techniques used. It usually has a topology with some central servers for dynamic
host configuration (DHCP) and name resolution (DNS) besides more specific services needed in the
environment. In managed networks centralized systems decide on the basics of the configuration of
the client machines which includes the IP properties mentioned above. The benefit of this is easy
configuration of all clients without touching each. Basically you plug-in a new box and it will be
configured automatically through a DHCP server (this applies to the network configuration, more
sophisticated setups can go further).

2.2.1 Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol (DHCP) is defined in [Dro97].

7

DHCP aims to be a mechanism that allows administrators to have a local configuration policy that is
sent from the server to the clients. DHCP clients are Internet hosts that use DHCP to obtain network
configuration parameters that have been mentioned above as a requirement and several others. A
DHCP server returns these configuration parameters on request by a client. The goal is to avoid
manual configuration on the client.

It allows for easy configuration of clients from a central server. In the DHCP server the administrator
defines a range of IP addresses that will be used to configure the clients. It also provides information
about subnet mask, the default gateway and a DNS server.

Communicating Network Parameters When a client starts a network device that needs configu-
ration it starts sending a broadcast to the local network with a DHCPDISCOVER (figures 1 and 2(a)).
This packet might be received by multiple servers. To keep it simple we will assume that there is
only one DHCP server on the network. This server then determines a configuration for the discover-
ing client and sends a DHCPOFFER with these parameters to the client. The client waits for a given
time for DHCPOFFERs from DHCP servers on the local network. It then chooses one configuration
and requests that configuration using a DHCPREQUEST packet from that very server. The server ac-
knowledges this request with a DHCPACK (figure 2(b)). At this moment the client has all the network
configuration data it needs to communicate with other hosts on the network (figure 2(c)). The DHCP
server guarantees that no IP address is in use by more than one host at the same time. If a client
requests a new IP address later the server will try to supply the client with the network configuration
it had last time if at all possible.

Benefits and Drawbacks DHCP allows administrators to have a centralized configuration instance
for every client on the network. It is easy to plug-in a new box or to offer “guest networks” for visitors
without much hassle.

This centralized approach is also one of the biggest problems. In mobile ad-hoc networks such a
centralized instance is not always available. [Dro97] explicitly states that a host should not by default

Server

Client
D

H
CPD

ISCO
V

ER

D
H

CPREQ
U

ESTD
H

CP
O

FF
ER

D
H

CP
A

CK

D
H

CPRELEA
SE

Figure 1: DHCP Protocol Handshake

8

(a) Client broadcasts
DHCPDISCOVER

(b) Negotiation of pa-
rameters

(c) Client configured

Figure 2: Gathering network configuration via DHCP in a network. Filled circles mark hosts which
are already configured, plain circles are hosts without network configuration data, the filled square is
a DHCP server

act as a DHCP server unless it is configured to do so. Since this will rise a couple of problems it is
not an option to just enable a DHCP server on every mobile host to negotiate network parameters.

2.3 Ad-hoc Network

We have learned that in a managed network scenario there is not much to do for the user to get
connected to the network. DHCP will distribute the needed configuration data to the client which
due to this does not need manual network configuration. We also learned that this strategy is not
applicable in so-called ad-hoc networks.

Ad-hoc networks are networks that work without a pre-existing infrastructure. In most cases these ma-
chines are laptops that form a wireless network without a base station or several hosts interconnected
with either a cross-over Ethernet cable or a simple switch. [CAG05] states: “As the Internet Protocol
continues to grow in popularity, it becomes increasingly valuable to be able to use familiar IP tools
such as FTP not only for global communications, but for local communications as well.” This means
that the transfer of knowledge and experience gathered with protocols that were used over the Internet
for years will help to also improve the local network experience and make it easier to effectively use
machines while you go.

Since there is no infrastructure in place there is no central instance like a DHCP server that will
manage the network configurations of the hosts. A special approach is needed for this hosts to agree
on a valid and plausible network configuration.

2.3.1 Link-Local IPv4 addressing

To solve this issue link-local addressing has been defined in [CAG05].

Local Link The local link defines a local, closed, interconnected set of machines. The machines
are on the same local link if:

9

Router

Local
Link 1

Local
Link 2

Figure 3: Local-link networks

• any host A from that set sends a packet to any other host B in that set, using unicast, multicast,
or broadcast, the entire link-layer package payload arrives unmodified, and

• a broadcast sent over that link by any host from that set of hosts can be received by every other
host in that set.

This definition has some implications:

• the link-layer header maybe modified, but not the payload

• packets may pass through devices such as repeaters, bridges, hubs or switches

• packets may not travel through devices like IP routers that decrement the TTL or otherwise
modify the IP header.

As a simple definition one could say that machines are on the same local link if they can send packets
to each other with a TTL of 1.

In figure 3 you can see two networks connected via a router (squared box). The one network consists
of the plain components (circles marking hosts, the hexagon denotes a switch), the other network
consists of the filled items. There are two networks, each forming a local link as marked by the
dashed circles. Machines in the local-link 1 will not be able to contact machines in local-link 2 if
they only use link-local communication with a TTL of 1 since the router would decrement the TTL
counter thus reaching 0 and it would drop the packet.

Auto-configuration in an ad-hoc network Since there is no central managing component the hosts
must agree on IP addresses in a peer-to-peer style fashion.

For this purpose a special IPv4 prefix 169.254/16 is registered with the Internet Assigned Numbers
Authority (IANA). The first 256 and the last 256 addresses in this range are reserved for future use
and must not be selected.

10

Algorithm 1 Link-Local Address selection
A← {169.254.1.0, ..., 169.254.254.255}
T ← {}
repeat

ip← random from set(A\T)
T ← T + ip

R← arp check ip taken(ip)
until R = false or T = A

The algorithm used to determine an IP address on each machine is simple. (see algorithm 1). It first
initializes A to be the set of available addresses and T to be the empty set of taken IPs. Now we take
a random IP from the set A\T with a uniform random distribution. It then checks if the IP is already
taken on the local link by using ARP to query for that IP address. Taking an IP and checking if it is
available is done until a valid and not yet taken IP address has been found or until all IPs have been
tested. Since link-local addresses are meant to be used in small networks this should rarely happen.

[CAG05] states that with 1300 hosts there is a 98% chance of selecting and unused IP address. After
a second try the chance rises to 99.96%. Networks with more than 1300 hosts are in most cases
candidates for a managed network anyway.

So we see that IPv4 link-local addresses can be assigned without a central infrastructure and without
user interaction which is the basic foundation for simple ad-hoc networking.

3 Name Resolution in Ad-hoc Networks

In a managed environment there is a central Domain Name System (DNS) server that can be queried
to transform the human-readable names of networks and hosts into a machine-readable IP address of
the host on the network. But in an ad-hoc network there is by definition no central infrastructure and
thus no central DNS server.

There are two proposals on how to solve that problem, Link-Local Multicast Name Resolution and
Multicast DNS. We are going to describe both with a focus on the latter. We assume that the reader
has a basic understanding of DNS and how it works, especially in regard to resource record (RR)
types, SRV records and query protocol (confer [Moc87] and [GVE00]).

3.1 Multicast networking

As a prerequisite of both described name resolution protocols we have to give a short introduction to
IP multicast networking.

IP multicasting is the transmission of an IP datagram to a ”host group”, a set of zero or more hosts
identified by a single IP destination address. A multicast datagram is delivered to all members of its

11

destination host group with the same ”best-efforts” reliability as regular unicast IP datagrams, i.e., the
datagram is not guaranteed to arrive intact at all members of the destination group or in the same order
relative to other datagrams. The extension for Multicast IP networking has been defined in [Dee89].

Multicast addresses are in the designated range between 224.0.0.0 and 239.255.255.255. The ad-
dresses are assigned by the IANA which hosts a table of assigned multicast addresses on their web-
site. The range of addresses between 224.0.0.0 and 224.0.0.255, inclusive, is reserved for the use
of routing protocols and other low-level topology discovery or maintenance protocols, such as gate-
way discovery and group membership reporting. Multicast routers should not forward any multicast
datagram with destination addresses in this range, regardless of its TTL.

Multicast networking can be understood as a kind of radio: The packets are broadcasted to all the
stations on the local network which can decide to tune in on the right multicast addresses (which
could be considered the signal frequency in the radio scenario) they want to listen to.

3.2 Link-Local Multicast Name Resolution

Link-local Multicast Name Resolution (LLMNR) is defined in [ATE05]. LLMNR is based on DNS
– but it does not aim to replace it. It uses multicast communication to query names of other hosts
on the local-link. It provides the user with name resolution in a peer-to-peer network if there is no
DNS server available. LLMNR is meant to be used to resolve single-label names (names which do
not include any domain information and thus no dots). Sending all DNS requests via LLMNR would
lead to a security risk. Assume someone tries to resolve www.some-bank.com and someone on the
local-link answers with his own IP address.

Existing DNS resolver implementations cannot simply be re-used because LLMNR needs some
changes of the DNS header by changing the semantics of some flags. The changes affect special
name conflict situations that can occur in an unmanaged network if two hosts have the same name.
The retrieval recursion where a DNS server would ask further hosts up the hierarchy have been re-
moved. This feature makes no sense in an ad-hoc network since there is only a flat hierarchy of DNS
servers where all hosts can be reached directly since the scope is only the local link.

3.3 Multicast DNS

Multicast DNS (mDNS) is defined in [CK05b] (more informations may also be found at [URLa]). As
the name suggests mDNS proposes a slight change on how DNS is used – via multicast networking.
It does not require changes to the structure of DNS messages as LLMNR does. What it does is to
describe what has to be taken care of if DNS responders start sending and answering queries targeted
to or originating from a multicast address.

We are going to describe mDNS more detailed than LLMNR since later we will see how it nicely fits
together with DNS-based service discovery and why LLMNR does not.

12

(a) Client multicasts
query

(b) Client waits for
answers

Figure 4: The plain circle marks the host querying the networks for some RR via mDNS. After a
while it has received answers from two of the three hosts

The basic idea is to have a new top-level domain called .local. In this space all names are freely
available. They are not assigned to a specific host or person. Usually every host has a name. In a
managed network this is usually a fully qualified domain name (FQDN) like laptop.example.com. On
the local-link the machine then tries to take the name in the .local domain. For the example this would
mean that the laptop would claim laptop.local for itself. As the .local domain is not managed by a
central station conflicts may occur. mDNS has methods to resolve these conflicts (see below).

3.3.1 Name Reservation

If a machine joins a network, starts a network device or awakes from sleep mode it needs to claim
its host name. As mentioned earlier multiple machines could use the same name. This problem is
known from protocols like NetBIOS or AppleTalk where the very same problem could occur. But in
real-world usage this rarely happens.

If a mDNS host wants to claim its name it first probes if the name is already taken on the network.
For this it sends a query message that asks for any record types assigned to the name it desires. It is
assumed that a host should have exclusive ownership of its name and associated records as it could
be confusing if one host owned the A record (IPv4 address) for a name and another host the HINFO
record (hardware and operating system information). If it receives no answer it repeats the step two
more times. If it still got no response the host assumes that the chosen name is available. It then
sends an announce message containing all the resource records the host now claims ownership of. If
the host gets any answer it has to assume that another host already uses the desired name and it must
choose another name.

3.3.2 Querying Information

To query records a host sends a packet to the multicast packet with the desired query. To suppress
known answers it places all known records in the answer section of the query. This is done to reduce
the traffic imposed on the network. It then waits for a given time for answer packets. Some records

13

(like the query for PTR RR in DNS-SD as we will see later) are not unique and may provoke multiple
answers. So the mDNS responder has to wait for some time to collect all answers. Here we also see
a major difference to regular DNS: During a regular DNS query the DNS server would respond with
an error if the record did not exist (like NXDOMAIN, not existant domain). With mDNS this is not
the case. An indication that the service does not exist must be taken from the fact that no answer has
been received for the requested record type.

3.3.3 Caching

mDNS does not only send queries via multicast networking, but the answers are also send back as
multicast traffic. This allows a station on the network to cache entries that have been requested by
other hosts. This is also used to detect conflicts and to fill the known answers section as mentioned
above. This reduces the traffic imposed on the network. To prevent stale date being in the cache
forever DNS defines a time-to-live (TTL) value for each RR. The recommended TTL for records
containing a host name is 120 seconds and 75 minutes for all other records. To avoid problems with
hosts and services disconnecting from the network these hosts should send a “Goodbye message”.
This allows other host to remove the appropriate records from their cache.

4 Dynamic Service Discovery

The number of services offered in networks grows rapidly. New services emerge and old services
get replaced. There are new mobile network-enabled devices every day. Almost all modern PDAs
and notebooks are equipped with wireless networking technology. Following this observation it is a
critical task to give users the possibility to find and use services available on a particular network.

The traditional way was to configure each service explicitly on each host. For example the adminis-
trator would define a list of printers and configure each of this list on every machine.

Service discovery protocols enable network devices, applications, and services to find other comple-
mentary network devices, applications, and services needed to properly complete specified tasks. In
a service discovery environment, services advertise themselves, supplying details about their capabil-
ities and service specific information needed for accessing it.

From the user’s point of view, service discovery greatly simplifies the task of finding and utilizing
services on a network. From the administrator’s point of view, service discovery simplifies the task
of building and maintaining a network, especially in regard to adding new devices and services to the
network.

In the past there have been application specific protocols to ease the configuration. These methods
only worked for a specific service. Examples are the CUPS (Common Unix Printing System) brows-
ing feature. Service discovery aims to provide a unified solution for all services in a network. This
reduces the amount of traffic on the network and makes implementation much easier since there is
only one protocol to implement.

14

Some considerations regarding the protocol to use:

• Directory and peer-to-peer environments: Should the service discovery use a central directory
server that registers services and distributes the lists across the network?

• Openness: Is the system based on open standards? Is everybody free to implement and use the
protocol?

• Strictness: Should the protocol define every aspect from discovering the services up to an ab-
stract way to access the service?

• System and manufacturer independence: Should the used protocol work beyond operating sys-
tem barriers and not for just an eligible group of manufacturers?

• Existing implementations: Do implementations exist and are they in real-world usage?

We will present some existing protocols with regard to the given criteria. In the end we will slightly
focus on DNS-SD for reasons that will become obvious in sections 5 and 6.

4.1 Universal Plug and Play (UPnP)

UPnP is being developed by an industry consortium which was founded and is lead by Microsoft. The
recommended scope for this technique are home and small office networks (SOHO) where it enables
peer-to-peer mechanisms for service discovery. UPnP does not support a central service directory
which aggregates information about available services. This renders it useless for bigger networks
(the traffic needed for inter-peer communication would cause too much traffic on the network). The
consortium says UPnP is open. In fact you have to become a member of the UPnP Forum to claim
that your products are UPnP-enabled. The steering committee is under control of Microsoft and the
statutes grant special privileges to them. UPnP is very strict. It does not only define the service
discovery process, but it also gives detailed description on how services have to be used. It defines
detailed protocols for each service that UPnP offers. It has to be approved by the UPnP committee.
UPnP can be considered monolithic because of this. A benefit is that vendors can count on specific
abilities if a service has been discovered and that there is no ambiguity while talking to the service.
On the other hand it takes a long time to get a new service UPnP-ready.

4.2 Jini

Jini is an architecture to federate groups of devices and services to a single, dynamic distributed
system. Although it states that these connected devices and services form an ad-hoc network it still
needs a central lookup server which denies the applicability of our ad-hoc definition. A more detailed
introduction to Jini can be found in [Mic99].

15

SrvRqst

SrvRqst

SrvRply

(a) SLP without DA

SrvRqst

SrvRply
SrvRegSrvAck

(b) SLP with DA

Figure 5: Service discovery 5(a) without DA, 5(b) with DA, • SA, ◦ UA, 2 DA, – Unicast, - -
Multicast

Each Jini device has to run a Java Virtual Machine (JVM). Jini consists of a specified API that can
be used to participate in the network. The Lookup Table on the lookup server may not only contain
pointers to information about the available services but also Java binary objects which can be consid-
ered as driver in the Jini system. They may implement any communication method the Java system
is capable of for example resembling a proprietary protocol. These binary objects are sent over the
network and executed on the machine that wants access to the service. This is the best and the worst
thing about Jini at the same time. While it allows for really easy access to an arbitrary service it may
also yield a security risk to the system since code from foreign machines gets executed in the local
system.

Devices and applications start a process called Discovery and Join on startup where they will try to
find the lookup server and place their available services into the Lookup Table. To find available
services in the network a Lookup for the service is done on the lookup server.

The system is quite heavy meaning that it needs a JVM running on every single machine that wants to
join the network and that there is a complex software infrastructure needed. It does not just handle the
discovery of services but it also handles how a specific service is accessed and may even supply drivers
needed for the usage. Since the Java binary objects are in principle portable between systems this
avoids software installations per system. The Jini specification does not only include the infrastructure
but also a programming model (since it is tied to the Java platform). This makes Jini strict in the
sense that it defines not only the discovery but also means by which services can be accessed from an
application. Jini was specified by Sun. They still more or less control the project but in March 2005
they changed their licensing model to build up a Jini community and ride the Open Source wave. All
Sun contributions are now released under an Open Source license allowing everybody to use the specs
and code freely for any kind of project.

4.3 Service Location Protocol (SLP)

SLP is defined in [GPVD99]. We will only discuss SLP version 2 (SLPv2). SLP allows computers and
other devices to find services on the local network. It is a decentralized, lightweight and extensible
protocol and it scales from small ad-hoc networks to large corporate networks.

16

SLP defines three different roles for devices. The User Agents (UA) are devices that search for services
on the network (for example a desktop machine looking for printers); Service Agents (SA) announce
one or more services on the network (in the example that would be the printer announcing its print
ability) and Directory Agents (DA) that cache a list of available services. There may be any number
of DAs (also none) on the network which allows SLP to scale from small ad-hoc and SOHO to large
enterprise networks.

SLP supports service browsing for a number of attributes that can be logically concatenated (AND,
OR) and queried with several comparators (=, <, <=, >, >=). This way the client can choose the
best candidate for the requested service available on the network.

Figure 5 shows two service discovery processes. 5(a) shows the procedure if there is no DA available,
for instance in an ad-hoc network. It sends a multicast query SrvRqst to the network asking for a
specific set of attributes. All applicable SA answer with a SrvRply message with the details of the
service they are offering. 5(b) shows what happens if there is a DA. First the SA registers with the
DA by sending a SrvReg to the DA. The DA confirms this registration with a RegAck message. After
that the service can be found. The UA sends all queries to the DA if there is one via Unicast. The DA
answers with an appropriate set of services which registered with the DA. Service registrations have
to be renewed with the DA (lease concept) to avoid invalid cache entries if a service did not unregister
itself properly before shutdown (for example because of power failure).

SLP does only describe the service discovery itself and not how to access the services that can be
found. It just defines some well-known service templates to have some kind of standard for similar
services. The IANA keeps track of these service templates. See [GPK99] for details.

There exist a couple of implementations of SLP. OpenSLP is an Open Source implementation main-
tained by Novell. Novell also used SLP in their NetWare products version 5 to 7. Another implemen-
tation was written by Sun Microsystems. They are using SLP as a service discovery only fall back
in Jini. Since SLP is an open standard everybody is free to implement and use it in any environment.
There is no single company steering the protocol development.

4.4 DNS-based Service Discovery (DNS-SD)

DNS-SD is the newest approach to service discovery. It was developed by Apple in the past few years
and an Internet draft has been published in June 2005 (confer [CK05a] and [URLb]).

4.4.1 Protocol Overview

DNS-SD describes a convention for naming and structuring DNS resource records (RRs). As the draft
states given a type of service that a client is looking for, and a domain in which the client is looking
for that service, this convention allows clients to discover a list of named instances of that desired
service, using only standard DNS queries.

17

Answer

Query

Query

Answ
er

A
ns

w
er

Query

(a) DNS-SD over mDNS

Query

Answ
er

DNS Server

DNS Update

(register)

(b) DNS-SD with DNS server

Figure 6: Service discovery 6(a) on an ad-hoc network, 6(b) on a managed network, • Service, ◦ User
station, 2 DNS Server, – Unicast, - - Multicast Query, - · - Multicast Answer

DNS-SD can work over mDNS, which allows it to work on the local-link. This is a desired feature
to be usable in an ad-hoc network. DNS-SD can also use the conventional DNS which works as a
directory server where requests can be send to. This allows DNS-SD to scale to large corporate and
enterprise networks (see figure 6).

To discover a service a host first sends a request for a PTR RR for the desired service and domain
(a PTR record is a pointer to additional information, if a PTR RR exists for the queried resource
then this points to some other location in the domain space). For example to query for printers the
host might query for ipp. tcp.example.com where ipp. tcp determines the service (Internet Printing
Protocol (IPP) over TCP) in the domain example.com. If used with mDNS the domain must be .local
(see section 3.3 on page 12). The result is a list of zero or more PTR RR to service instance names.
A service instance name is of the form <Instance> . <Service> . <Domain> where <Instance>
is an arbitrary precomposed UTF-8-encoded text, <Service> is the service type queried for and
<Domain> is the domain queried in.

The returned list is specific to the service requested by the user (for example a printer). The list of
instance names is then presented to the user who decides which service to use.

To get the needed information to connect to the service three more queries are needed. First the SRV
RR for the instance name is queried. SRV RR are defined in [GVE00]. They describe a naming
convention for resource records of the form Service. Proto.Domain (see the example for the PTR
query above), where Service is a standardized service identifier and Proto is either UDP or TCP, and a
resource record that specifies information where the service can be accessed (for example port number
and target host).

Secondly a TXT RR (custom text) is queried for the instance name. This TXT RR may carry addi-
tional information that is needed to access a given service. These settings are given as name/value
pairs of strings. For example old protocol like the LPR printing protocol do not include feature ne-
gotiation. So a client cannot query via the protocol itself which printing queues are available or what

18

features these printers have (color or b/w printer, data format etc.). In this case the needed information
is carried in the TXT RR.

At last the host name mentioned in the SRV RR is queried (query for A or AAAA RR). Since any
host may serve for example http. tcp.example.com this information is stored in the SRV RR.

4.4.2 DNS-SD in Ad-hoc Networks

Until now we have only mentioned the usage of DNS-SD in a managed network with a central DNS
server that acts as a directory of services. Earlier we have seen that for ad-hoc networks a multicast
name resolution approach is necessary for name resolution when there is no infrastructure in place
(see section 3). In section 3.3 we have described a method to achieve this goal by using only standard
DNS queries. Since DNS-SD still only involves standard DNS queries it makes sense to just use
DNS-SD over mDNS thus allowing service discovery in an ad-hoc network via Multicast DNS (see
figure 6(a)).

4.4.3 Traffic Reduction

As we have seen above querying a given service via DNS may involve quite a few DNS queries. If
there are numerous stations on a network this might easily lead to a high volume of traffic. To avoid
this DNS-SD features several mechanisms to lower the traffic caused to the network.

DNS Additional Record Generation When a DNS server (or mDNS responders) answers a query
for a PTR record for a specific service it creates additional records in the Additional Section of the
DNS Message. These additional records where typically not requested by the client but the sender of
the response has reasonable grounds to expect that the client might request them shortly.

As we have seen in the Protocol Overview (see page 17) when a client requested a PTR record it is
very likely that it will request at least once for SRV and TXT RR for a given instance name and for
the appropriate address records. To lower the average traffic on the network the responder adds all
SRV and TXT records for the instance names in the PTR resource data and all address records (A or
AAAA RR) mentioned in any SRV records. Also if a specific SRV RR is queried it immediately sends
all address records whose names appear in the SRV RR in the Additional Section. This mechanism is
especially powerful if there is only one record in the PTR query response.

Caching and Known Answer Suppression We have seen that DNS-SD works just fine with mDNS
in an ad-hoc network. mDNS uses multicast to send response packets for queries. This allows the
clients for caching the answers that other clients requested. If a client now needs the information
that another client requested and this has not been purged yet (records have a specified time-to-live to
avoid dead entries in the cache) some queries may even unnecessary since the information is already
there.

19

In some cases only part of the information needed will be available from the cache. To avoid re-
sending of all these records again (or sending answers for this known information at all) the querying
client puts all the relevant known records into the Answer Section of the DNS Message for the query.
This is actually a feature of mDNS and not DNS-SD but one can imagine that this will be especially
useful for DNS-SD.

4.4.4 Service Registration

To announce a service in an ad-hoc network no registration is needed. Since the mDNS responder will
answer for all records it is authoritative for it will answer all queries for its service records anyway.

In a managed network there are two ways to manage the service directory with the DNS server. In the
static case the administrator explicitly names all service instances in the domain’s zone file. In this
scenario the service registration is done manually. Problems can arise if the machine goes down (for
example for maintenance) or gets a new IP address. For some time invalid information may be stored
in the DNS server. Another approach which solves this problem is using Dynamic DNS Updates
(confer [VTRB97]). In this case clients update the DNS server with their service information when
they go live and order the removal of this information if they go out of service (see figure 6(b). To
avoid problems when machines disappear suddenly (for example during a power failure) this has to
be extended by Dynamic DNS Update Leases, which means that records have a specified time-to-live
and if not re-newed by that time they are deleted automatically (confer [SCK05]).

5 Comparison

In this section we are going to compare the different approaches for name resolution in ad-hoc net-
works (LLMNR and mDNS) and service discovery (UPnP, Jini, SLP and DNS-SD). We will give a
brief overview of some of the strengths and weaknesses and how widespread it is in the market today.

There is no need to compare anything for the instant networking section since there is only one
standard (IPv4 local-link addressing) which is widely accepted and used on a variety of systems
including Unix/Linux, Windows and Apple Macintosh for years. Before there was only DHCP for
managed networks to configure machines automatically on the network. Now there is a method to
agree on these settings in a peer-to-peer style network.

5.1 Name Resolution

In section 3 we presented two methods to resolve names in an ad-hoc network, LLMNR and mDNS.

LLMNR has gone further in the standardization process of the IETF but it was controversial because
it had a number of issues that have to be discussed in more detail and the number of rewrites that have
occurred. After finishing the last call it was not released but scheduled for another editing cycle.

20

One of the problems that were mentioned is that LLMNR does explicitly not use the .local domain
for name lookup as mDNS does. Since mDNS is already being deployed in the market with Apple
Bonjour and with several printers from major manufacturers this might lead to a problem since in
LLMNR only single-label names (no domain part in the name and hence no dots) and so it would
send questions for .local (which users may already have encountered with mDNS products in the
market) would lead to a lot of lookups to the root DNS servers.
Another problem is that one cannot distinguish if the answer from a lookup comes from another
LLMNR host on the local-link or an authoritative name server. This can be considered a security
flaw since it allows spoofing of host names. mDNS solves this problem by using the .local domain.
Because of this LLMNR can be considered to be a DNS extension while mDNS is more a different
usage method of DNS.
LLMNR has also some inherent differences to mDNS that make it incompatible with DNS-SD. The
LLMNR FAQ (confer [Abo]) states some differences between LLMNR and Bonjour (which is an
implementation by Apple of both, mDNS and DNS-SD). These differences cause trouble if DNS-SD
would be used together with LLMNR. We take a closer look to the differences between mDNS and
LLMNR:

• Bonjour allows multiple questions to be asked within a single query; LLMNR does not (can
cause high network load)

• Bonjour allows responses to be sent to a multicast address; LLMNR only allows unicast re-
sponses (no caching on other notes on the network, causes higher load)

• Bonjour allows the TC bit to be set within queries; LLMNR does not (mDNS allows queries and
answers to be split over several messages while LLMNR does not, but in some cases DNS-SD
answers may exceed the size of a single DNS Message)

While it is possible that LLMNR and mDNS are used at the same time on the same subnet (they have
different multicast addresses and port numbers) this could lead to confusion since you wouldn’t know
the name was resolved.
There are several implementations of mDNS today, in most cases in union with a DNS-SD imple-
mentation (since this is one of the most prominent uses). Apple’s implementation is called Bonjour
and can be considered to be the reference implementation. It is available for a variety of systems
including Mac OS, Windows and Linux. A new implementation is Avahi which gains some momen-
tum. It seems likely that it will become the default implementation used by the Gnome desktop. As
mentioned mDNS is already deployed with a number of products so it has a substantial share in the
market already. [Abo] mentions two existing LLMNR implementations, but in fact LLMNR has not
appeared “in the wild” until today.

5.2 Service Discovery

We have discussed four different service discovery protocols, see table 2 for an overview.

21

Jini UPnP SLPv2 mDNS/DNS-SD
Developer Sun Microsys-

tems
Microsoft IETF Apple

License Open Source open (only for
members)

Open Source Open Source

Programming
Language

Java independent independent independent

Implementation
(example)

Sun Porter
Project

Windows OpenSLP Bonjour, Avahi

Attributes
searchable

yes no yes no (subtypes
only)

Directory Sup-
port

Lookup Table re-
quired

not supported yes (optional) yes (optional)

Service An-
nouncement

Discovery/Join
protocol

Advertisement
(ssdp:alive)

SrvReg with DA Multicast An-
nounce or DNS
Update

Service Regis-
tration Lifetime

Leasing CACHE-
CONTROL
header in alive
message

Lifetime in ser-
vice registration

TTL for RR

Access to Ser-
vice

Service proxy
object based in
Java RMI

Invoking Action
via SOAP, query
for state

Service type
(protocol, port)

Service type
(protocol, port)

Table 2: Summary of major service discovery protocols

Until today we do not see service discovery in every day computer usage but the demand is growing.
There have been some specific solutions for an isolated software like the browsing feature for the
Common Unix Printing System (CUPS).

Another reason for this might be that there have been other problems that had to be solved on the
Desktop (where service discovery is particularly useful) before there was a real need for service
discovery. Today we see progress on all major desktops like Mac OS, Gnome and Windows. If there
were a single standard this could become extremely powerful.

Nowadays the desktop metaphor is somewhat popular. Users are used to browse their files with a
graphical front end. They can navigate through their files which allows them to open such without
knowing the explicit location as a path but more with a spatial feeling. Service discovery extends
this to different kinds of network services. Different applications that allow some kind of information
exchange can easily search for compatible services and present the user with a list he can choose from
– be it a collaborative text editor during a meeting, a printer in a different location or just a chat in the
next Internet cafe.

22

Jini We have seen that Jini is quite heavy in the sense that it is dependent on the Java platform.
This way only hosts that have a Java Virtual Machine installed can join a Jini network. Because of
this it seems to be more suited for specific environments like corporate and enterprise networks where
this dependency can be solved by a simple “install policy”. It may be handy in some situations in an
ad-hoc network but since Java is still not installed by default on most systems it is too likely that users
trying to communicate in an ad-hoc network fail because one of the users does not have Java (or Jini,
which is even more likely) installed.

UPnP UPnP has been authored by Microsoft and is now governed by a UPnP forum with strict rules
for membership. Because of the rather strict licensing and membership policies it is unlikely that we
see free implementations of UPnP in the near future. UPnP has been implemented in Windows XP
for example. One of the most popular uses is the ability to punch holes in firewalls or to forward
ports from a router appliance to a host machine. Time has to show how quickly UPnP can react to
new services and if the tight standardization is speaking for or against UPnP. But until UPnP spreads
to more platforms it is only an isolated application waiting to be freed and not a tool to work in an
ad-hoc network with anybody you want.

The absence of a possibility to have a central service directory might become a problem for corporate
networks because of multicast storms if many hosts are looking for services at the same time.

SLP With SLP as an open standard there was a chance that service discovery could be widely
deployed in the network. But as we see today this has not happened or at least it did not reach the
critical mass of market penetration.

SLP version 1 had a couple of short comings that were fixed with SLP version 2. UPnP was designed
about at the time when the SLPv2 RFC was written. There were a couple of considerations that made
the UPnP designers to go with the Simple Service Discovery Protocol (SSDP) instead of SLP. One of
the problems they had with SLP was that it required a lot of work to be done from scratch that already
existed. SLP defines a whole new communication protocol, a syntax for service descriptions and a
directory protocol – things that have already been addressed by older standards like HTTP, XML and
LDAP.

Several software companies included SLP in their products. Novell added support for SLP to their
NetWare products. They are also the maintainers of OpenSLP, a free implementation of SLP. Suse
(also a Novell product now) had support for SLP since version 9.1 of their Linux distribution. Mac
OS also supports SLP with their Network Services Location Manager.

It seems today that SLP is at a dead end.

DNS-SD DNS-SD is a light-weight protocol that uses the well-known DNS for service discovery.
Usually we see mDNS/DNS-SD implementations in one piece of software.

In an ad-hoc network it can be combined with mDNS to work without any additional infrastructure.
In a managed environment a DNS server can be used as a central service directory. Virtually every

23

managed network has its own DNS server. Adding some static entries for important services to the
appropriate zone files is very simple. And also a dynamic update mechanism is available with DNS
Update.

Several companies are pushing products with support for mDNS/DNS-SD into the market. Apple
mention half a dozen printer manufacturers on their website. Implementations for the major desktop
systems like Mac OS, Linux and Windows exist so it already gained some importance in the market.

One of the major benefits of DNS-SD is that it recycles existing knowledge. There are already many
administrators that are familiar with DNS servers – so setting up a service directory is just the easy
task of configuring the name server.

DNS-SD is simpler than any other protocol described, but it also leaves some things open. The
additional attributes that are required by a service are set in the additional TXT record as name/value
pairs. But the names of parameters are not defined. So two printer manufacturers might use two
totally different parameter sets for the same settings. There is a presumption that some kind of de
facto standard will arise. There have also been some more formal approaches. For example Apple
have released [App05] that describes how printers should be accessed using mDNS/DNS-SD which
should prevent the very problem of balkanization.

DNS-SD defines the names of the devices (the instance part of the instance name) as UTF-8 strings.
These strings are presented to the user hiding all the little details needed for the service configuration.
No more entering of host names (or even worse: IP addresses), port numbers and other service specific
details.

6 Conclusion

In this seminar paper we presented all major components needed for a Zero Configuration Networking
(confer [URLc] or [SC05]) – IP address configuration, name resolution and service discovery.

We will now argue for the set of IPv4 local-link addressing, mDNS and DNS-SD as the set of proto-
cols favored by ZeroConf – which is what ZeroConf de facto is about. Later we will see that this even
scales well to corporate managed networks.

For IP address configuration there is a widely accepted standard defined by an RFC so there is not
much to argue.

We are now going to the top of the stack for reasons that will become obvious soon. We have shown
four different methods of service discovery. Jini is heavy and Java-dependent, thus it would not fit a
protocol suite of open protocols for ZeroConf. UPnP is governed by a strict consortium of companies
and defines query strictly how to access services, and not only how to find them. So this does not
suite a lightweight protocol suite. SLP is an open standard that might have done the job. But it
defines a whole new communication protocol. After being out there for almost ten years it has still
not reached the critical mass needed to be widely usable. DNS-SD is a rather young approach but
there are already a variety of platforms supporting it. It is very simple and clean and implementations

24

for all major systems already exist and it is an open standard. Especially in the Open Source world
it is gaining some momentum. It does only define the basics about how to discover services, not
how to use them so existing applications do not need to be restructured to fit the needs of a specific
protocol (although some applications may benefit from doing so and new applications exploiting the
new features available may seem appropriate in some cases) but they can just be announced as-is
via DNS-SD. These are the reasons why DNS-SD is chosen as the service discovery protocol for
ZeroConf by most vendors.

For name resolution there are two approaches. We have shown that there are a few problems with
LLMNR, especially in conjunction with DNS-SD. Since we already argued that it makes sense to
use DNS-SD for ZeroConf environments we have to go with mDNS – not just because it looks like
the superior solution but also because we need it to make use of DNS-SD in local area and ad-hoc
networks.

So with this combination of protocols for ZeroConf – IPv4 local-link addressing to assign IP addresses
in ad-hoc networks, mDNS send and receive DNS queries/answers on the local link to resolve names
and for use with DNS-SD, the chosen service discovery protocol – we have a complete protocol suite
to solve the problems outlined in this seminar paper.

References

[Abo] Bernard Aboba. LLMNR Frequently Asked Questions (FAQ). http://www.
drizzle.com/∼aboba/DNSEXT/llmnrfaq.html.

[App05] Apple Computer, Inc. Bonjour Printing Specification. White Paper, April 2005.

[ATE05] Bernard Aboba, Dave Thaler, and Levon Esibov. Linklocal Multicast Name Resolution
(LLMNR). Internet-Draft, Internet Engineering Task Force, October 2005.

[CAG05] Stuart Cheshire, Bernard Aboba, and Erik Guttman. Dynamic Configuration of IPv4
Link-Local Addresses. RFC 3927, Internet Engineering Task Force, May 2005.

[CK05a] Stuart Cheshire and Marc Krochmal. DNS-Based Service Discovery. Internet-Draft,
Internet Engineering Task Force, June 2005.

[CK05b] Stuart Cheshire and Marc Krochmal. Multicast DNS. Internet-Draft, Internet Engineering
Task Force, June 2005.

[Dee89] Steve Deering. Host Extensions for IP Multicasting. RFC 1112, Internet Engineering
Task Force, August 1989.

[Dro97] Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131, Internet Engineering
Task Force, March 1997.

25

[FLYV93] Vince Fuller, Tony Li, Jessica (Jie Yun) Yu, and Kannan Varadhan. Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation Strategy. RFC 1519,
Internet Engineering Task Force, September 1993.

[GPK99] Erik Guttman, Charles Perkins, and James Kempf. Service Templates and Service:
Schemes. RFC 2609, Internet Engineering Task Force, June 1999.

[GPVD99] Erik Guttman, Charles Perkins, John Veizades, and Michael Day. Service Location Pro-
tocol, Version 2. RFC 2608, Internet Engineering Task Force, June 1999.

[GVE00] Arnt Gulbrandsen, Paul Vixie, and Levon Esibov. A DNS RR for specifying the location
of services (DNS SRV). RFC 2782, Internet Engineering Task Force, February 2000.

[Mic99] Sun Microsystems. Why Jini Technology Now? White paper, Sun Microsystems, January
1999.

[Moc87] R. Mockapetris. Domain Names - Implementation and specification. RFC 1035, Internet
Engineering Task Force, November 1987.

[Pos] Jon Postel. Internet Protocol, Protocol Specification. Technical report, Internet Engineer-
ing Task Force.

[SC05] Daniel H. Steinberg and Stuart Cheshire. Zero Configuration Networking. O’Reilly,
December (est.) 2005. Not yet released.

[SCK05] Kiren Sekar, Stuart Cheshire, and Marc Krochmal. Dynamic DNS Update Leases.
Internet-Draft, Internet Engineering Task Force, June 2005.

[URLa] http://www.multicastdns.org.

[URLb] http://www.dns-sd.org.

[URLc] http://www.zeroconf.org.

[VTRB97] Paul Vixie, Susan Thomson, Yakov Rekhter, and Jim Bound. Dynamic Updates in the
Domain Name System (DNS UPDATE). RFC 2136, Internet Engineering Task Force,
April 1997.

26

