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Shivprakash Iyer and Sunil K. Sinha: A robust approach for
automatic detection and segmentation of cracks in
underground pipeline images. Image and Vision Computing,
23:921-933, 2005.
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Motivation

The situation

Communal sewer networks often one of the biggest
infrastructures in an industrialized country
(USA: approx. 1 million miles)

Networks built 50-60 years ago

Networks age and deteriorate until they fail

Pipes are in general too small for humans

Images can be taken via installed camera or by
semi-mobile robots

Large underground sewer networks need continuous checks.
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Motivation

The problem

Continuous check needed to guarantee fitness

Currently these checks are done manually

Checks highly dependent on experience,
concentration and skill level of operator

Human operators: subjectivity, fatigue, high costs

Reliable automated defect detection and classification system
desirable to compensate these problems
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Domain

What are cracks?

Large linear portions

Branch like a tree

Intensity distribution of a crack feature cross-section
looks like a specific gaussian curve

More or less constant width

Retinal vessels: similar features ⇒ similar method works to
segment vessels
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Image Processing Pipeline

Processing pipeline structure

Usage of mathematical morphology (MM)
and linear filters (LF)

Results in binary crack map

Basic 3-step processing pipeline

1 Preprocessing (contrast enhancement)

2 Enhancement of cracks (MM and LF)

3 Segmentation of cracks (MM alternating filters)
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What is mathematical morphology?

Introduction

Mathematical morphology (MM) developed by
Matheron and Serra at the Ecole des Mines in Paris

Extract features based on a priori knowledge
about object geometry

Set-theoretic method providing a quantitative description of
geometric structures

Based on expanding and shrinking operations with regard to a
given structuring element (knowledge about object)

Originally for B/W images, extended for gray images
(interesting case here)
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What is mathematical morphology?

Definitions

Images are defined as a function mapping from points to intensity
values (here: grayscale, Imin = 0 and Imax = 255):
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What is mathematical morphology?

Important notation specialties for crack detection

General MM:

Foreground: white

Background: black

Crack detection MM:

Foreground: black

Background: white
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What is mathematical morphology?

Important notation specialties for crack detection

General MM:

Foreground: white

Background: black

Crack detection MM:

Foreground: black

Background: white

Some items change meaning:

Hole

Object

Object

Hole

Some operations change meaning:

Expanding

Shrinking
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Tim Niemueller Crack Detection and Segmentation 12 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

Morphology operations

Dilation

δe
B(F )(P0) = maxP∈P0∪e·B(P0)(F (P))

Basic expanding operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
P0 Point in image

(repeat for every point)
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Basic expanding operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
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Morphology operations

Dilation

δe
B(F )(P0) = maxP∈P0∪e·B(P0)(F (P))

Basic expanding operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
P0 Point in image

(repeat for every point)

(crack detection, white background, black foreground)
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Morphology operations

Erosion

εe
B(F )(P0) = minP∈P0∪e·B(P0)(F (P))

Basic shrinking operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
P0 Point in image

(repeat for every point)
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Basic shrinking operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
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Morphology operations

Erosion

εe
B(F )(P0) = minP∈P0∪e·B(P0)(F (P))

Basic shrinking operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
P0 Point in image

(repeat for every point)

(general, black background, white foreground)
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Morphology operations

Erosion

εe
B(F )(P0) = minP∈P0∪e·B(P0)(F (P))

Basic shrinking operation.

B Structuring element (SE)
e SE dimension scaling factor

(default: e = 1)
F Image
P0 Point in image

(repeat for every point)

(crack detection, white background, black foreground)
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Morphology operations

Opening

γe
B(F ) = δe

B(εe
B (F ))

B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Dilation of the erosion
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Morphology operations

Opening

γe
B(F ) = δe

B(εe
B (F ))

B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Dilation of the erosion
Removes small objects

(basic opening by 3 × 3 square SE: eroded)
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Morphology operations

Opening

γe
B(F ) = δe

B(εe
B (F ))

B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Dilation of the erosion
Removes small objects

(basic opening by 3 × 3 square SE: eroded and dilated)

Tim Niemueller Crack Detection and Segmentation 15 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

Morphology operations

Closing

φe
B(F ) = εe

B(δe
B(F ))

B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Erosion of the dilation
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Morphology operations

Closing

φe
B(F ) = εe

B(δe
B(F ))

B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Erosion of the dilation
Removes small holes
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Morphology operations

Closing

φe
B(F ) = εe

B(δe
B(F ))

B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Erosion of the dilation
Removes small holes

(basic closing by 3 × 3 square SE: dilated and eroded)
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Morphology operations

Top-hat

τ e
B(F ) = F − γe

B(F )
B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Removes a particular feature from the image
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B(F ) = F − γe

B(F )
B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Removes a particular feature from the image
Example: edge detection using top-hat filter
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Morphology operations

Top-hat

τ e
B(F ) = F − γe

B(F )
B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Removes a particular feature from the image
Example: edge detection using top-hat filter

(edge detection by top-hat: opening by 3 × 3 square)
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Morphology operations

Top-hat

τ e
B(F ) = F − γe

B(F )
B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Removes a particular feature from the image
Example: edge detection using top-hat filter

(edge detection by top-hat: top-hat with original image)
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Morphology operations

Top-hat

τ e
B(F ) = F − γe

B(F )
B Structuring element (SE)
e SE dimension scaling factor (default: e = 1)
F Image

Removes a particular feature from the image
Example: edge detection using top-hat filter

(edge detection by top-hat: inverted result)
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Morphology operations

Geodesic reconstruction

One of the most common MM techniques

Instead of one image and a SE now two images are used

Marker image is source image, mask image is max. or min.
image (depending on operation)

Geodesic: Extracts connected components based on distance

Can be used with different morphological operations
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)
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Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

1 Erode marker image

2 Take maximum of eroded image and mask image

Tim Niemueller Crack Detection and Segmentation 19 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

1 Erode marker image

2 Take maximum of eroded image and mask image

3 If image has been changed in this iteration goto 1
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

(segment 1 and 4: original image)
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

(segment 1 and 4: dilation by linear SE, length = 45 pixel, vertical)
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

(segment 1 and 4: marked dilation result)
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

(segment 1 and 4: dilation by linear SE, length = 7, horizontal)
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

(segment 1 and 4: un-marked dilation result)
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Morphology operations

Geodesic reconstruction by erosion (geodesic closing)

Φ(F ,G ) = ε
(n)
G (F ) = max

(

G , ε
(n−1)
G (εB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
ε Erosion

ε
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(ε
(n)
B,G

(F ) = ε
(n+1)
B,G

(F ) holds)

(segment 1 and 4: geodesic reconstruction with original as mask)
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Morphology operations

Geodesic reconstruction by dilation (geodesic opening)

Γ(F ,G ) = δ
(n)
G (F ) = min

(

G , δ
(n−1)
G (δB(F ))

)

B Isotropic structuring element
F Image (Marker)
G Image (Mask)
δ Dilation

δ
(0)
B,G

(F ) = F

n number of iterations until
stability has been reached

(δ
(n)
B,G

(F ) = δ
(n+1)
B,G

(F ) holds)

1 Dilate marker image

2 Take minimum of dilated image and mask image

3 If image has been changed in this iteration goto 1
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Specific parameters for crack detection

Structuring elements

Based on observation of cracks specific SEs are chosen

Linear SE

SE length: 12 pixel

Degree of rotation: every 10◦ from 0◦ to 180◦

Filters have been chosen for dark features
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What are linear filters?

Linear filters

Pictures of zebras and dalmatians both have black and white
pixels

They appear in about the same amount

Difference in order and characteristic appearance of groups

Linear filters are means to detect these specific characteristics

Each pixel is set to a weighted sum of its and its neighbours’
values (convolution)

Weights defined as matrix (kernel)

Here: edge detection
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Filters used for crack detection

Gaussian

Smoothing an image

Gaussian kernel
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Gaussian

Smoothing an image

Discrete Gaussian kernel from
Gaussian function

(a) Original (b) Gaussian
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∂y2

Natural to smooth before applying
laplacian ⇒ Gaussian as function

Laplacian of Gaussian kernel

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

Lσ =
(x2+y2

−2σ
2)

σ4 exp

„

−
(x2+y2)

(2σ2)

«

Tim Niemueller Crack Detection and Segmentation 25 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

Filters used for crack detection

Laplacian of Gaussian

Classic method for edge detection

Laplacian operator:
(∇2f )(x , y) = ∂2f

∂x2 + ∂2f
∂y2

Natural to smooth before applying
laplacian ⇒ Gaussian as function

LoGw
σ (F ) = F ◦ Lw

σ

(F convolved with L)

Laplacian of Gaussian kernel

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

Lσ =
(x2+y2

−2σ
2)

σ4 exp

„

−
(x2+y2)

(2σ2)

«

L
5
1 =

2

6

6

6

4

−1 −3 −3 −3 −1
−3 0 6 0 −3
−3 6 21 6 −3
−3 0 6 0 −3
−1 −3 −3 −3 −1

3

7

7

7

5

Tim Niemueller Crack Detection and Segmentation 25 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

Filters used for crack detection

Laplacian of Gaussian

Classic method for edge detection

Laplacian operator:
(∇2f )(x , y) = ∂2f

∂x2 + ∂2f
∂y2

Natural to smooth before applying
laplacian ⇒ Gaussian as function

LoGw
σ (F ) = F ◦ Lw

σ

(F convolved with L)

Laplacian of Gaussian kernel

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

Lσ =
(x2+y2

−2σ
2)

σ4 exp

„

−
(x2+y2)

(2σ2)

«

L
5
1 =

2

6

6

6

4

−1 −3 −3 −3 −1
−3 0 6 0 −3
−3 6 21 6 −3
−3 0 6 0 −3
−1 −3 −3 −3 −1

3

7

7

7

5

Tim Niemueller Crack Detection and Segmentation 25 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

1 Introduction

2 Morphology

3 Linear filters

4 Detection
Detection procedure

5 Evaluation

6 Summary

Tim Niemueller Crack Detection and Segmentation 26 / 41



Introduction Morphology Linear filters Detection Evaluation Summary

Detection procedure

Processing pipeline structure

Usage of mathematical morphology (MM)
and linear filters (LF)

Results in binary crack map

Basic 3-step processing pipeline

1 Preprocessing (contrast enhancement)

2 Enhancement of cracks (MM and LF)

3 Segmentation of cracks (MM alternating filters)
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Detection procedure

Preprocessing

Goal: Enhance contrast between cracks
and background

0 Original grayscale image

1 Median (15 × 15)

2 Compare foreground (original) and
background (median) image,
take minimum

Preprocessing pipeline
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Enhancement pipeline
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Detection procedure

Crack enhancement

1 Closing by Reconstruction
FCl = Φ (mini=1,...,18{φBi

(F0)})

2 Sum of top-hats

Fth =
17
∑

i=0
τBi

(FCl) =
17
∑

i=0
(FCl − γBi

(F ))

Wrong formula (white objects)!

Enhancement pipeline
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Detection procedure

Crack enhancement

1 Closing by Reconstruction
FCl = Φ (mini=1,...,18{φBi

(F0)})

2 Sum of top-hats

Fth =

(

17
∑

i=0
(φBi

(F ) − FCl)

)−1

Very noisy results, omitted.

Enhancement pipeline
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Detection procedure

Crack enhancement

1 Closing by Reconstruction
FCl = Φ (mini=1,...,18{φBi

(F0)})

2 Sum of top-hats

Fth =

(

17
∑

i=0
(φBi

(F ) − FCl)

)−1

Very noisy results, omitted.

3 Laplacian of Gaussian Flap = LoG 12
2 (FCl)

Enhancement pipeline
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Detection procedure

Crack detection and segmentation

Final segmentation of cracks

Segmentation pipeline
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Detection procedure

Crack detection and segmentation

Final segmentation of cracks

Alternating MM filters

1 Closing by Reconstruction
F1 = Φ (mini=1,...,18{φBi

(Flap)})

2 Opening by Reconstruction
F2 = Γ (maxi=1,...,18{γBi

(F1)})

Segmentation pipeline
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Detection procedure

Crack detection and segmentation

Final segmentation of cracks

Alternating MM filters

1 Closing by Reconstruction
F1 = Φ (mini=1,...,18{φBi

(Flap)})

2 Opening by Reconstruction
F2 = Γ (maxi=1,...,18{γBi

(F1)})

3 Large closing with double scale

Ffinal =
(

mini=1,...,18{φ
2
Bi

(F2)}
)

Segmentation pipeline
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Evaluation results from the paper
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Parameters: S length of SE in pixels, D degree of rotations

Goal: false positive rate below 7%, false negative rate below
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Evaluation results from the paper

Criteria for parameter selection

Parameters: S length of SE in pixels, D degree of rotations

Goal: false positive rate below 7%, false negative rate below
2%

Probability of false negative (crack not detected)
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Probability of detection

Probability of false
positive

Probability of false
negative
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Evaluation results from the paper

Criteria for parameter selection

Probability of detection

Probability of false
positive

Probability of false
negative

Best parameters in paper:
SE length S = 12 pixel
and a degree of rotations
D = every 10◦
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Evaluation results from the paper

Criteria for comparison to different approaches

Comparison based on individual evaluation of approaches

Ground truth by manually segmenting test images (reference)

Completeness ≈ # matched crack pixels of ref.
# crack pixels of reference

(optimal: 1)

Correctness ≈ # matched crack pixels of extraction
# crack pixels of extraction

(optimal: 1)

Redundancy
≈ # matched crack pixels of extr.−# matched pixels of ref.

# crack pixels of extraction
(optimal:

0)

Quality ≈ compl·corr
compl−compl·corr+corr

(optimal: 1)

Parameters for other approaches not mentioned in paper
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Evaluation results from the paper

Different approaches

Otsu’s thresholding

Apply thresholds to detect cracks

Separates a number of intensity classes

Uses statistical methods to minimize variance in a
class and at the same time maximize the variance
between the classes
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Evaluation results from the paper

Different approaches

Otsu’s thresholding

Apply thresholds to detect cracks

Separates a number of intensity classes

Uses statistical methods to minimize variance in a
class and at the same time maximize the variance
between the classes

Canny’s edge detection

Detect edges in the image between crack and
background

Uses linear filters (Gaussian and Sobel)

Apply Gaussian, then apply a series of gradient
filters to detect edges in different directions
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Comparison to different approaches

Otsu’s thresholding

Canny’s edge detector

No information about
parameters in paper

Very good evaluation results
for proposed method in
paper (not verified)
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End of Talk

Questions?

Information compiled at
http://www.niemueller.de/uni/crackdet/
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