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Abstract

Buried infrastructures like sewers and water mains havestohecked for their current
condition. Cracks are a strong indicator for the conditida pipe. An affordable way to
detect those cracks is to take images of the pipeline andnesgsi processing technigues to
detect cracks in these images. The methods used to acchrtipgask are mathematical
morphology and curvature evaluation to segment imagesresbect to a precise geometric
model to define crack-like patterns. This paper discusseparpy Shivprakash and lyer
where this method has been proposed. It describes the methiaiuces the theoretical
backgrounds, discusses the evaluation of the method inaper@nd evaluates the paper
itself.
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1 Introduction

The detection of cracks in underground pipelines is an ingmfirst step to keep sewer infras-
tructure intact. Up to now this is done by a visual inspectigra human operator. The images
evaluated are usually taken with a closed circuit teleng@CTV) system or with some kind
of sewer scanner evaluation technology (SSET) which uggahsists of a camera mounted on
a robot manually controlled by the operator.

The detection of weaknesses and cracks in the pipeline is dffine after taking the images.
The success of this task is influenced by the experience kilidesel and the concentration
of the operator. Therefore, it is desirable to have an autedhdefect detection technology for
reliable and reproducible results which are independetti@gxecuting operator.

The basic task for automated condition assessment of urcderd pipelines is to detect cracks,
holes, joints and fissures in the images taken via CCTV or SSET

It has been observed that crack-like patterns in undergtqipeline images seem to have a
specific Gaussian profile. The paper that we are going to sis(iS05]) in more detail deals
with the detection of these crack-like patterns in imagdse fechniques used in the paper for
crack detection are mathematical morphology and line@réilt

kll

(b) The two binary crack maps which are the result of the dised approach when fed with the cracks from 1(a).



Figure 1 shows an example for cracks in underground pipétrages. Note that these cracks
have different crack patterns, background patterns arat.cbhe discussed method has to deal
with these problems and detect the cracks despite of thesm/ances. You will also see that

there are joints in the image that are characterized as ¢natke algorithm. The paper states
that there has to be a pre-processing step that sorts oetkivebof things before we search for

cracks. This is not part of the paper and not discussed héerelore, we do not consider this

to be a problem of the algorithm.

In section 2Mathematical morphology and morphological operatases are going describe the
ideas behind mathematical morphology and how this can bkeapjp images for detecting
features in an image based on their geometric model. Inse8tLinear filters and curvature
evaluationwe are going to describe briefly linear filters and how theyleamised for curvature
evaluation. In section Betection of crack featurese will describe how the given paper utilizes
the previously described techniques for crack detectiosection F=valuationwe discuss the
evaluation results mentioned in the paper and we will evaltlee paper itself. In section 6 we
are going to give a short summary and a conclusion.

2 Mathematical morphology and morphological operators

2.1 Introduction

Mathematical morphologis a tool for extracting image components with respect tongete
ric features of these components. Instead of just manipglan image it allows for extracting
features from the image that can be used for representatsbdescription (with enough knowl-
edge about the image domain this can be used to get semdotimation about the image).
For example in the given domain cracks can be segmented fierbackground and can be
semantically described with a set of morphological filters.

Mathematical morphology in image processing was origynaddiveloped by Matheron and Serra
([Ser82]) at the Ecole des Mines in Paris. Itis a set-théomee¢thod of image analysis providing
a quantitative description of geometrical structures.dswleveloped to analyse geological data
and to detect the structure of the given material (for exanplfind inclusions in geological
images).

Mathematical morphology can be used to detect the boursdafiebjects, their skeletons or
their convex hulls. It is also often used as a pre- and pastgesing technique, for example for
thinning or pruning of edges.

Morphological operations are based on simple expandinghndking operations with regard
to a given structuring element. Originally mathematicalrphmlogy has been used for binary
(black and white) images and has been extended later to beniegrayscale images as well.
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2.2 Mathematical notation

Mathematical morphology is based on set-theoretic opmratinamely shrinking and expanding
a set (the image) based on another conditional set (stragtalement). The two-dimensional
(2D) imagef' is defined as a function:

F : ZQ = [Imzru ]max] (1)

that map=2D coordinates to the rangé,,;..; I,...] which defines the possible intensity values.
For a binary (black and white) image this is the ran@gl], for 8-bit grayscale images it is
[0; 255] which is used in the paper. Now we define two set transformatibat will then make
the notation for the basic morphological operations eabg Jet

A, ={c€Z’|c=a+z Vac A} 2)

wherez € Z**! is the translation ofd. Later we will use this notation to shift the structuring
element over the image. The set

B={deZ?|d=—-b ¥Ybe B} (3)

is the reflection of5.

In this paper only binary structuring elements are handiedhey can be defined as a function
E 77— [0;1] 4)
where 0 means “don’t care” and 1 means “consider” which dépem the applied operation.

In general in images dark colors are considered to be thegoackd of the image while white
parts are the objects. For our purpose we will see that we tiegthe other way around. This
makes the examples shown in this section confusing bechegeseem to have the opposite
effect. This is because crack images were used for the exsmpl in these the white parts are
the background and the dark parts are the objects.

2.3 Basic operations: dilation and erosion

The most basic morphological operations are dilation awdien. These operations are the
basic expanding and shrinking operations mentioned beknasion is the dual of dilation and
vice versa. An interesting thing to note is that dilation barused to enhance the white portions
of an image while the erosion will help to strengthen the blaartions. While we assume that
in general white is the background and black the foregrobeatosion effectively expands the
objects while dilation thinnens them.
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Figure 1. Schematic representation of dilation and erosion

2.3.1 Dilation

The dilation is the basic morphological expansion operatid/e are now going to firstly de-
scribe that case of binary images and then describe a shgimge that will be done to operate
on grayscale images.

For dilation on binary images the structuring element is atbover the image. Each pixel that
the mask “touches” is taken into the result image. This cawiitéen as

FeE={zeZ’|(E),NF +0} (5)

with image F' and structuring elemenkt. So the dilation is the set of points such that the
structuring element and the image have common points ifttbetsiring element’s anchor point
is at pointz.

For grayscale images the dilation is defined differently. d&é&ne it as a function for a given
imageF’ at pointF, and a given structuring element

0p(F)(Fy) =  max  (F(P)) (6)

PePyUe-B(Po)

wheree is a scaling factor for the structuring element (the stranty element is scaled in
dimensions, not in values). This means that for grayscaéges the point at coordinatéy
will be set to the maximum of all points that are given in theisturing element.

See figure 1(b) for an example. As you see the structuringei¢im moved over the original
setA with the structuring elemen. The dashed line marks the resulting setiob B.

2.3.2 Erosion

The erosion is the basic morphological shrinking operatibgain we will look at the simpler
case of binary images first and then give a different notdtograyscale images.

For the erosion of binary images the structuring elementased over the images. A pixel is
taken into the result image if the whole structuring elemgimcluded in the current neighbor-
hood. This can be written as

FoE={zxe€Z*|E,CF} (7)
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Figure 2: Dilation and erosion

with image I’ and structuring elemenff. This makes the erosion the set of points where the
structuring element is fully included in the original imagen its origin is moved ta.

We write the extension of erosion to grayscale images as

ep(F)(R) = min  (F(P)) (8)

PePyUe-B(Po)

with image F, structuring element B, a scaling fact@and a processing poirffy. The struc-
turing element is moved over the image. Each pixel touchedhbystructuring element is
considered and the minimum intensity for all these pixetsaisulated. The processed pixe|
in the resulting image is then set to the calculated miniméithe neighbourhood with regard
to the structuring element.

2.4 Combined operations: opening, closing and top-hat

Opening and closing are combinations of two basic operatidine opening is the dual of the
closing and vice versa. These operations can be used to eesnuadl objects or to close small
holes. The top-hat operation can be used to remove a ceeainré from the image. We only
give the definition for the case of grayscale images hereedinis is what we need for crack
detection later.
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(a) Original image (b) Opening (c) Closing

Figure 3. Opening and closing
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(a) Original image (b) Erosion (c) Opening (d) Inverted result

Figure 4: Hull by top-hat: Image 4(a) contains the origimahge, 4(b) is the erosion of 4(a),
4(c) is the opening of 4(b) and 4(d) contains the invertedltes

2.4.1 Opening and Closing

The morphological opening can be written as

Vp(F) = 05(eR(F)) (9)
so it is a dilation of the eroded imadé

The morphological closing can be described as

¢p(F) = ep(p(F)) (10)

so it is the erosion of the dilation of the imagé The factore is a dimensional scaling factor
(see above the dilation and erosion subsections). Notedtlabperations (dilation and erosion)
of the opening and closing filters take the same structudegent.

The opening can be used to remove small objects from the iragd)éhe closing removes small
holes. As mentioned earlier our background definition f@c&rimages is the opposite of the
usual definition in mathematical morphology so here opemind closing operations have a
different effect: here the closing removes small object8enthe opening removes small holes!

In figure 3 you see an example for a closing and an opening. §ukefB(b) shows the opening

of 3(a). As you can see small holes have been closed whilerthles objects around remained

unchanged. Figure 3(c) shows the closing of 3(a) where svh@icts have been removed and
holes were retained.

2.4.2 Top-hat

This can be used to eliminate particular features from amendhe general method is to apply
an opening or closing to an image followed by a subtractictm Wie original image with the

order depending on the type of the feature. This is espgaiakful to subtract the background
from the real object. While in many situations it is probldim&o get a representation of the
background it is in most cases easier to get a rough estinhtte éeatures in the image. So to
get the background you remove the feature from the imageufnow subtract this background
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image with the feature removed from the original image yoll aily get the desired feature.
The order of the subtraction operation depends once morel@t ywou consider to be the
background and what the foreground.

The top-hat operation for an image with black backgroundwhite features can be described
as
T5(F) = F —(F) (11)

So it first calculates the opening of the imagewith regard to a given structuring elemeft
and a scaling factar and then subtracts the result from the original image. Fdk oaages it
has to be written as

TH(F) = ¢(F) — F (12)

This fundamental difference was overlooked in the papeeyTdescribe the top-hat filter for
white features while they write in the paper that it is useddfark features.

In figure 4 we have given a non-standard example about whatgowlo with a slightly ex-
tended top-hat filter (we allow more operations than just p@ning or closing). It is used to
detect the hulls of objects in an image.

2.5 Reconstruction operations

Up to now we have seen morphological operations that takemage and a structuring element
as input to apply a specific operation depending on the siringt element to the image. Now
we will learn about operations that take two images as timgiut and always use an isotropic
structuring element for a dilation or erosion operation.

We apply the dilation or erosion with the isotropic struatgrelement to the first image and
then use the second image to confine the result. Usuallydhispieated until stability of the
result has been reached and further application does nagefhthe result anymore. This way
the number of iterations does not have to be defined befor@ngrihe operation.

These transformations are called geodesic reconstrud@papplying the basic morphological

operations with an isotropic structuring element the odiimage (marker) is expanded or
shrunken by one pixel in each iteration. This marker imaglees confined by a so-called mask
image. The number of iterations then gives a measure forithartte of the pixels.

We are now going to introduce the geodesic reconstructioulilagion and erosion. In the
discussed paper they are called geodesic opening and gectiessng. But since no opening
or closing operation is performégve followed other literature ([Vin93]) in their nomenclagu

Again the type of basic operation that is used depends ondlloe af the features you want to
reconstruct. While you can use dilation for white featurea will need erosion to reconstruct
dark features.

10pening and closing operation apply two primitive filtersiletihe reconstruction only uses one
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Figure 5: Reconstruction by erosion: Image 5(a) contaia®tiginal image, 5(b) is the dilated
original with linear SE oriented &0° with a length of45 pixels (eroded and marked for better
visibility), 5(c) is image 5(b) dilated with a linear SE onied at0° with a length of7 pixels
(eroded and marked), and finally 5(d) contains the recocstdimage.

2.5.1 Geodesic reconstruction by dilation

The geodesic reconstruction by dilation (or geodesic apeas it is called in the paper) is used
to reconstruct white features in the image. The basic imagdha first marker image that is
used. A dilation operation is applied to the marker image tah confined with the mask
image until stability has been reached and further appdinatof the reconstruction operation
do not modify the result any more. The geodesic reconstmdiy dilation is described as

D(F,G) = () = min (G, 65c" (9(F))) (13)

with 5g{)G(F) = F' and stability has been reached aftaterations (this means that for the given
n the equatiomsgf)G(F) = 6,(;‘72;1)(F) holds). F' is the marker image (which is the original in the
first iteration),G is the mask image, depending on what you want to reconstrisch image
with the same definition range arfd < G for each iteration. B is the isotropic structuring
element used throughout the operation, in general thigis & squared structuring element.

2.5.2 Geodesic reconstruction by erosion

The geodesic reconstruction by erosion (or geodesic ajasint is called in the paper) is used
to reconstruct dark features in the image. It works analsfyoto the geodesic reconstruction
by dilation but instead of the dilation an erosion is appliedach iteration.

O(F,G) = s (F) = max (G, (=n(F))) (14)

with sgo)(f) = f and stability has been reached aftaterations (this means that for the given
n the equatiomé")(f) = 5§"+1)(f) holds). F' is the marker image (which is the original in the
first iteration),G is the mask image, depending on what you want to reconstrisch image
with the same definition range arfd > G for each iteration.B is the isotropic structuring
element used throughout the operation, in general thigis & squared structuring element.
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Figure 5 shows an example of a geodesic reconstruction lsjoeroThe task is to isolate the 1
and the 4 in the image. As we can see these are the only numhkers karge vertical portion.
So we use along vertical linear structuring element andatidil to extract this feature. As we
see in 5(b) there are several numbers where we can find a lotigatéinear portion. But as we
can also see itis not as wide as in 1 and 4. So we do anothepdilaith a horizontal linear
structuring element long enough to not fit into any numbetsbly in 1 and 4. Finally we do
the reconstruction by erosion and get the 1 and the 4.

With this example we have seen the basic structure that isriymdg all efforts to create a
morphological filter sequence to extract features. Yourdatee what is characteristic for the
feature in terms of its geometry and then this is exploitetthw@ppropriate morphological oper-
ations and structuring elements to extract these features.

3 Linear filters for curvature evaluation

Pictures of zebras and of dalmatians have black and whiggiand in about the same number,
too. The differences between the two are based on the ogdand characteristic appearance
of groups of pixels in the image, rather than the individugépvalues.

We have seen before that mathematical morphology can betoskdermine this information
if a geometric model of the object that should be recognizekinown before. Morphology
segments the image by given geometrical patterns. Hereewgoang to introduce methods for
obtaining descriptions of the appearance of a small groyp@is. We use weighted sums of
pixel values and its neighbours. Depending on the weightirnae can use it to find different
image patterns.

In this section we briefly describe linear filters in genenadl ahen discuss the Gaussian and
Laplacian filters in more detail. As we will see in section £4h filters are used for edge
detection.

In general for a linear filter you have a matrix of weights ofabitrary size which is called
kernel. Then each pixel in the destination image is set to ighted sum of the pixel in the
original image and its neighbourhood depending on the weidkfined in the kernel. This
process is called convolution. For a given imagend a kernelK we say that/’ has been
convolved withF'.

We have seen that in the case of mathematical morphologyakauat priory knowledge about
object geometries into account. In the case of linear filteesuse linear transformations in
order to extract certain features.

3.1 Mathematical notation

We are going to use a different mathematical notation fadnfilters compared to the descrip-
tion for morphology based filters. We define an input image & @moutput image R as a two

12
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dimensional matrix.
Fez™" and RezZ™" (15)

For linear filter we now define another matrix W of the same i will contain the weights
for the weighted sum for each pixel. This matrix will then bedved” over the image with the
center element being at the processed pixel at positign. The pixel at positiorii, 7) in the
resulting image R will then be set to the weighted sum of thgital image depending on the
weight matrix W.

As an example we give the equation to compute the local ageraeer a fixed region. Here we
use a block oRk + 1 x 2k + 1 pixels around the processed pixel. For an input image F this

gives the output
u=i+k v=j+k

u=i—k v=j—k
In this example each pixel is weighted by the same constant.

For further notion we define this weight matrix W now in a mommpact form. We assume
that all weights that are not explicitly stated are 0. Thiywe can have a small weight matrix
of values which we calkernel The process of applying a filter with a given kernel is called
convolution With a kernel H and an image F we get the result

Rzy = Z Hi—u,j—vFuv (17)

if H is convolved with F to yield R.

3.2 Gaussian filter

We have already described a simple averaging filter as anmgearefore. In many situations it
seems to be more appropriate to use a kernel which has latigataén the center and and that

13



fell of sharply with increasing distance from the centerislinodels the kind of smoothing that
occurs with a defocused lens system. A symmetric Gaussiarekits these criteria and can
be written as

1 (2® +97)
Go(z,y) = o2 exrp (—T‘Q (18)
and therefore a Gaussian kernel fatfa+ 1 x 2k + 1 block can be defined as
1 ((i—k—=12%+{U—-k—-1)?
Gij = 553 TP <— 52 (19)

In the Intel Integrated Performance Primitives (IPP) thei$daan kernel is specified from the
Gaussian distribution with a standard deviatiorof 0.85 for a3 x 3 matrix:

—_

N A
NN
N

3.3 Laplacian of Gaussian

In grayscale images edges can be modeled as fast changeaghitmess — for example a switch
from black to white. For a one dimensional signal one canlyaske that the derivative mag-
nitude is extremal if the second derivative is zero. This msethat is is a good idea to look
where the second derivative is zero to find large changesharsdedges. This can be extended
to two dimensions. For this we need an analogue to the seandhtive which is rotationally
invariant.

In [MH80] Marr and Hildreth proposed the Laplacian operatdich has these properties. For

the 2D case it is defined as Y

2 —_ — -
It is natural to smooth the image before applying the LaplaciSo if we setf in (20) to G,
from (18) and remove the constant normalizing fa%gg% we get for the Laplacian:

(z° +y* —20%) (z* +9°)
Ly(z,y) = o exp —W (21)
To get a kernel appropriate for linear filtering we now definmatrix LY. This matrix has a
size ofw x w and is filled with values calculated like the following:

L2 (i, j) = £, (i - e %) (22)

In the IPP the Laplacian with@ax 5 kernel is given as

-1 -3 -4 -3 -1
-3 0 6 0 -3

L= -4 6 20 6 —4
-3 0 6 0 -3
-1 -3 —4— 3 -1
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To apply the Laplacian of Gaussian to an image this kefijelis then convolved with the
imagerF

LoG"(F) = F o L" (23)

4 Detection of crack features

In the previous sections we have described the techniquesatiiematical morphology and
linear filters for curvature evaluation. Now we are going &scribe the way [ISO5] combines
these techniques to detect crack-like patterns in undergtpipeline images.

Some information that is needed for reproducing the ressltaissing in the paper, i.e. the
dimensions and resolution of the taken images. Therefoeehad to re-experiment with the
parameters of the algorithm to reproduce the results withomn image processing pipeline
(see 4.5). But itis likely that this would have been necessaany case since it is unlikely that
all the parameters like image size and camera resolutiothareame. Also we could not get
the original database used in [IS05].

The pipeline consists of three steps:

1. Improve the contrast of the RGB pipe image by enhancingl#k (crack) pixels from
the “background” image.

2. Perform crack enhancement by applying two morpholodiltats and a linear filter com-
bination for edge detection.

3. Detect the cracks by applying a set of morphological 8lisith a rotating linear struc-
turing element.

We are now going to give an explanation what cracks are ingesfrimage processing us-
ing mathematical morphology and curvature evaluation \Withar filters. After this we will
describe the three steps of the image processing pipelim®ia detail.

4.1 Cracks - properties and parameters

Up to now we have an intuition what cracks are. The next stép explain what geometric
features we are going to exploit with our filters to detectksin images. The properties of
a crack a very closely related to the properties given fosgklke structures in [ZK01]. A

general assumption in the paper is the fact that the treegdéometry of cracks is the only
feature of interest in the image and everything else can hsidered to be background. This
reveals a major shortcoming. In images of underground pipslyou often have additional
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Figure 6: Linear structuring elements used with a length3pikels oriented at everi0° from
0° to 180°

features like junctions and joints. It is assumed that there been another processing step
before that has removed these features. This is not hand[¢g8d5]. It could be solved with a
priori knowledgé or via other image processing step carried out before thekatatection.

The paper names three basic properties of cracks:

e intensity distribution of crack feature cross-sectionkdstike a specific Gaussian curve
e they branch like a tree

e more or less have a constant width

Another important assumption is not explicitly named: tin@cks have a high rate of linear
parts. This means that the tree-like branching occurs gslend is continued by lines. This is
based on the observation made viewing a few images of th&rac

As we know the structuring elements depend on the a prionkedge gained about the object
that we want to detect. So with the knowledge about crackifeatlinear structuring elements
have been chosen with a lengthl@fpixels and a width of pixel and oriented at every)° from

0° to 180° which makes itl8 structuring elements. To combine the results of a morpho#dg
operation for every structuring element to one final resalappropriate operation (minimum,
maximum, sum) has to be carried out which depends on theeapfilter. In section 5 we
will show how these parameters have been determined. See figior the linear structuring
elements. We will refer from now on witB; to these linear structuring elements.

The kernel for the Laplacian of Gaussian has been choseoely for the expected width
of the cracks.

4.2 Preprocessing

The preprocessing step is only described very briefly in #ygep and it only consists of a few
steps.

2lf a map of the sewer network is available it may be used to kwhwther there are such features in the image
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(a) Original image (b) Median (c) Compared

Figure 7: Preprocessing of the image: The original imaggig fast treated with a median filter
15 x 15 which results in 7(b). This is then compared to the origingge and the minimum is
calculated in 7(c)

First a median filter is applied to each of the R, G and B plafi#seoRGB image. The window
size used for the media filter i$ x 15 which makes it a strong smoothing filter after which the
images are quite blurry. Small features are removed by thés from the image and this can
help to reduce the noise in the image. This median image isthewackground image.

The next step is a comparison of the original (foreground) #re background image. This
basically is a minimum filter which takes the minimum of thekground and the foreground
image.

In general this procedure slightly extends the scratch#sawlurry surrounding. This enhances
the contrast only very little. The median will in general mav the distance between the highest
and the lowest intensity. The following minimum compariswiti restore the darkest features
from the original image while preserving the higher loweteimsity bound and thus lowering
the contrast. After the preprocessing small holes have blesed. Objects tend to have a softer
border. It is interesting to note that during the experirsegdod results could be produced by
using a morphological smoothing (closing followed by anrapg for cracks).

4.3 Crack enhancement

Before finally detecting the cracks some steps of enhanceanerapplied to the preprocessed
image material. But de-facto the last of these steps aldteidasic detection step as we will
see below.

The first enhancement operation on the image is a morphalbgigsing. From the results of
the closing for each linear structuring element the minimsitaken for the result image. After
this a geodesic reconstruction by erosion is carried ouits ¢&n be represented as

.....

For = ( in, (0n.(F2)). 7 (24)

This will remove the first non-linear elements from the imagevill weaken them. Small holes
will be closed by this operation.
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(a) Closing (b) Sum of top-hats (c) Laplacian of Gaussian

Figure 8: Enhancement of the image: 8(a) the compared im@xeas/closed with the linear
SEs, 8(b) is the result of the proposed sum of top-hats, 8(itle Laplacian of Gaussian of the
closed image 8(a).

After this the paper describes a sum of top-hats. After eérpantal evaluation and studying
more literature it seems clear that the operation statelddrmpaper does not yield the promised
result. The paper requires the following top-hat operation

17 17
Foum—th = ZTB,L- (Fou) = Z (For — v, (F)) (25)
=0 =0
This results in a dark image since you basically subtractrttegge from itself. A more useful
operation for the top-hat would be

sum—th = (Z (¢5,(F) — Fcz)) (26)

=0
This will calculate a sum of top-hats, where we use a top-htt elosing. We subtract the
original image from the closing of the image. After this amdrsion has to be done to have
objects and background in the correct intensity range adain since this introduced a lot of
noise and false positives during the experiments this segpskipped. Figure 8(b) shows the
result of the proposed corrected operation but the furtipeglme used image 8(a).

The last enhancement step can already be considered to thef plae detection process. For
this we apply the Laplacian of Gaussian to the closed imaggin the paper to the sum of
top-hats image,.,.,—:1)-

Eap = LOG%2(F01) (27)

This will highlight all edges in the image irrespective oéthdirection. Since the size of the
kernel has been specifically taken so that it is wide enougictade the full width of cracks we
do not have holes in-between the edges. The parameters baghacian of Gaussian depend
on the expected width (which is by assumption almost cot)stdithe cracks in the image.

There is an example of the enhancement image processirgistégure 8. First the closing is
applied to the preprocessed image (8(a)). 8(b) shows the§top-hats proposed as correction
to the paper above. But since this introduced noise 8(c) shiogvLaplacian of Gaussian of the
closed image.
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Figure 9: Detection of cracks: Alternating filters are apgli9(a) is the Laplacian image after
a closing and reconstruction, 9(b) is opening (reconstiajobf the reconstructed closed image,
9 is the final result after applying a large closing operation

4.4 Crack detection

The final detection and segmentation of the cracks is dorteansiet of alternating filter opera-
tions based on mathematical morphology.

First we do a geodesic reconstruction by erosion on the minminof closings for the linear
structuring elements:

Fi=9 <Z,:r1nin18{¢3i<ﬂap)}> Eap) (28)
This will remove small objects from the Laplacian imagg,. If we compare figure 8(c) and

9(a) we see that this reduces the amount of noise for thegfateiatment of the image. Then we
do geodesic reconstruction by dilation on the maximum ofnapgs for the linear structuring

elements:

.....

F2 =T (Z:I{laxw{’yBl (Fl)}7 Fl) (29)

This will close small holes in the found cracks. After this gaculate the minimum of closings
with linear structuring elements twice as long as the onesisesl up to now (so if we used
structuring element®; with a length of12 pixels we now use a scaling factor of= 2 for the
filters effectively resulting in structuring elements wélsize of24 pixels):

.....

Ftina = (Z,:r%ﬁnls{gb?& (F) }) (30)

Everything that is not white in the resulting image is thensidered to be a crack and we get a
binary crack map.

In figure 9 you see the final steps of the processing. 9(c) ifinakimage, the so-called crack
map.
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Figure 10: FireVision Crack Detector and Morphology Playgrd

4.5 Experiments

For our own experiments we wrote a small application basedhenFireVision framework
from the AllemaniACs RoboCup team ([All]) of the RWTH AachefVe implemented the
morphology based and linear filters on top of the Intel Inaggnl Performance Primitives (IPP)
library ([IPP]). The FireVision framework provided us witdl the basic image processing
functionality we needed while the IPP provided fast implatatgons for the dilate and erode
operations that we could use to build up more complex fili&esdpening, closing, top-hat and
reconstruction operations.

The experiments revealed quite a few problems in the papéeatk not obvious if you do not try
to reproduce the results. These problems are discussedrendetail in the evaluation section.

The discussed process has been slightly extended and ndddifieur own experiments by the
following steps:

e The whole pipeline works on the YUV color space. Since thenshalgorithm works on
grayscale images this does not influence the algorithmseance. But it does change
the first step since the preprocessing cannot work on indaliR, G, and B planes.

e The example images have been inverted since the imagesdptbby the Institute of
Medical Informatics (IMI) show cracks which are the lightésatures in the image and
not the darkest.

Figure 10 shows the application before and after the algorihas been applied to the shown
underground pipeline image.
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5 Evaluation

After showing the methods used to detect cracks and intiadute backgrounds and tech-
niques used we are now going to evaluate the method and tlee pap

First we will discuss the evaluation results mentioned mphaper, give information about ex-
pected detection, false positive and false negative rateslscuss the comparison of the pro-
posed approach to other methods.

In the second part we will discuss the paper itself. We withglsimilarities to other papers and
try to find measures for the overall quality of the paper.

5.1 Method evaluation results

The evaluation of the method has been split into two partst Ehe optimal parameters for a
given database of images have been identified. The secqnevateto compare the proposed
approach to different methods, namely Otsu’s thresholdmdyCanny’s edge detector.

For both of these evaluation steps the cracks have beerifiddssto three classes. They
were chosen with respect to the most critical differencesrniages that can make or break
an algorithm. The classes are different crack patterngerdifit background patterns (due to
changing illumination and maintenance conditions whilgtgeng the image or vegetation and
algae in the pipes) and different colors of the images (whliepends on the material that the
underground pipeline is made of).

The images have been manually classified to have a grouriditnatge. These ground truth
images have been used for the evaluation of the results.

5.1.1 Evaluation of parameter combinations

First the paper discusses the evaluation of different patancombinations. As we have seen
in section 4.1 the geometric features demand linear strinctelements. So the parameters that
are of special interest here are the length and the degrestaifans of the linear structuring
elements that have been chosen for the morphological filférs degree of rotations determines
the number of linear structuring elements that are used anmtbimed in the morphological
operations.

The interesting criteria for the evaluation are:

e probability of detection: how likely is it that a crack in tireage is correctly detected

e probability of false positives: how likely is it that a crackthe image has been identified
where there is none
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e probability of false negatives: how likely is it that a crasknot detected in the image

The expected operation mode is that the machine does a gssHatation of underground
pipeline images with regard to cracks. If a crack has beeactlad a human operator will
inspect the image again and decide on the appropriate maimte operations. So the basic
idea is to reduce the workload by reducing the amount of irmalgat the operator has to han-
dle. Therefore it is bad to have false negatives. Since tba isl not to present images to the
operator where no crack has been detected a crack would giced. On the other hand a
false positive should be classified as “not a crack” by the &imuoperator on manual inspection
and the only problem is the increased workload of the opefatbile this is not desirable as
this raised the costs in the first place). Based on this theetesiaximum probabilities have
been stated in the paper @% for the false positive probability an2; for the false negative
probability.

In figure 11 charts from the paper have been reproduced. Ox #xés are the different param-
eter combinations (D for the degree of rotations and S forlehgth of the linear structuring
elements). For each combination the three classes are sirmivine appropriate probabilities.
The two columns that meet all desired criteria have been egark the paper the combination
with a structuring element length 6f= 12 pixels and a a degree of rotatiohs= 10 has been
chosen.

The evaluation was done on a database of 225 images fronusgarites. Since no comparable
database was available and the authors did not answer tedoesheir database the results
could not be verified.

The parameters directly depend on the image data that i fiae talgorithm. It depends on the
image size and the resolution and the average length of€tiadke supplied images. So itis
likely that in a different setup (different camera, imageai@tion etc.) this parameter evaluation
has to be done again. Since these parameters were not meghiiotie paper basic information
for a complete reproduction of the algorithm was missing.

5.1.2 Comparison to different approaches

The authors compared the morphology-based approach toaggpeoaches that have been pro-
posed in the municipal pipeline infrastructure communigfdse. Namely these are Otsu’s
thresholding and Canny’s edge detector. Based on the nmexatiground truth image four cri-
teria have been identified which are used to measure therpafwe of the different methods
to have quantitative data for comparison.

For the evaluation several different types of images arel.udérst the ground truth image
(reference) as described above. Then we have the resuttinlg map image from the algorithm
(extraction). Both of these images are then erodedby asquare structuring element to create
a buffer around the crack. The part of the method’s crack megge that lies inside the buffer
of the reference is called matched extraction, what liesidatis the unmatched extraction. The
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(a) Evaluation results for Otsu’s thresholding (b) Evaluation results for Canny’s edge detector

Class Cracks Background Color Class Cracks Background Color
Completeness 0.98 0.61 0.62 Completeness 0.92 0.61 0.62
Correctness 0.37 0.45 0.08 Correctness 0.20 0.44 0.07
Quality 0.37 0.35 0.08 Quality 0.20 0.34 0.07
Redundancy 0.22 0.23 0.24 Redundancy 0.15 0.17 0.14
(c) Evaluation results for proposed method

Class Cracks Background Color

Completeness 0.95 0.88 0.90

Correctness 0.98 0.94 0.91

Quality 0.93 0.83 0.83

Redundancy 0.00 -0.01 0.00

Table 1: Quality measures for different methods and diffeotasses of cracks.

part of the reference data that lies inside the extractefibisf called matched reference, what
lies outside is called unmatched reference.

The criteria that have been used are:

length of matched reference number matched crack pixels of ref.
length of reference =~ number crack pixels of reference

The completeness is the percentage of the ground truth thatks extracted as crack,

i.e. the percentage of true crack pixels that could be etddaloy the applied method and

that lie in the extracted buffer.

Completeness= [0; 1] with 1 being the optimal value.

e completeness

length of matched extraction number matched extracted crack pixels
[ength of extraction ™ total number extracted pixels

The correctness describes the percentage of the corredtiyceed crack data, i.e. the

percentage of the extraction that matches the ground tmgige.

Correctnesse [0; 1] with 1 being the optimal value.

e correctness=

length of matched extraction - length of matched reference
length of matched extraction

~, humber of matched extraction - number of matched reference
number of matched extraction

The redundancy represents the percentage to which the eshésttraction is redundant,
i.e. it overlaps itself. Remember that a buffer method waludsr evaluation and thus
there can be different matched extraction and referencis.Wauld not be possible with-
out the buffer method.

Redundancy | — oo; 1] with 0 being the optimal value.

e redundancy=
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_ length of matched extraction
— length of extraction + length of unmatched reference

N number matched extraction pixels
~~ number extraction pixels + number unmatched referencdixe

e quality

The quality is a more general measure that combines conmgig$eand correctness into a
single measure to get a better feeling for the performane@m@figorithm.
Quality € ]0; 1] with 1 begin the optimal value.

Table 1 shows the evaluation results. The three sub tabpessent the three compared ap-
proaches. Each table shows the results from the evaluatitmeagiven four criteria for the
three different classes of cracks. The green values markdbevalue for the three methods.
As it turns out only the completeness value is higher in QGtsaresholding, all other values
are closer to the optimal for the morphology approach. Thmegleteness value does not count
very much considered that the correctness of of Otsu’s iolding is just20%. If we have a
look at the combined quality measure it is easy to spot tleattbrphology approach is much
better than Otsu’s thresholding and Canny’s edge detection

These results could not be verified due to the lack of a conmdatabase. Also it is not clear
what parameters were used for Otsu’s thresholding and Caadge detector. So even with the
database the results could not be reproduced reliably.

5.2 Paper evaluation

For the evaluation of the paper ([ISO5]) one other paper ispefcial interest. In [ZK01] Zana

and Klein present a method to detect vessel-like structuittssthe example of blood vessels
in retinal images. The method presented is basically thg s@me method presented by lyer
and Sinha in [IS05]. Since Zana and Klein’s paper is olden tthee presented paper by lyer
and Sinha it seems that it was used as a template. The propusédds are the same with
the only difference being that while vessels are the brgfhséructure in the element cracks
are the darkest feature of the image. Since morphology halsagerations depending on the
foreground-background relation it is easy to convert théhoe to work on this feature. The

Laplacian of Gaussian kernel can easily be modified by clmantjie sign of all values in the

kernel to operate the desired way.

The formula for the top-hat is wrong (see section 2.4.2). [&/thinking about this we came
up with the idea that actually the Zana and Klein method wademented and ran on inverted
crack images and afterwards the notation was adapted tdetttkes. This is just a wild guess,
but it is supported by the observation that in the sectionri®ary of the proposed algorithm”
of [IS05], the threshold applied to the final image is “intéyns> 1”. This would consider the
white parts to be the cracks.

There are several points in the paper where the origin besaieous. One is the description
of vessel and crack structures, which is almost literally same. At another point lyer and
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Sinha use\ in the description of the formula of a geodesic reconstaichiy dilation (geodesic
opening). But this is never defined. However, it is definedhimpiaper by Zana and Klein.

Some very important pieces of information are missing, fameple the used image size and
resolution, typical crack length and width and the paramseté the other algorithms used in
the evaluation. This makes it hard to reproduce and checiethdts. An email requesting that
information remained unanswered.

What is much more detailed in [IS05] is the evaluation sectigVhile Zana and Klein give

almost no evaluation results lyer and Sinha give reasonabldts and explain their methods.
They compared the morphology approach to Otsu’s threshgldnd Canny’s edge detector.
What is yet missing is a comparison to a human operator. QOfsedthis varies but there should
be some data to get an estimate what human operators perkaronl this task and what level
of performance has to be reached for the automatic deteatidnsegmentation to be a real
alternative to the manual crack classification procedure.

6 Conclusion

In this seminar paper we have discussed the [IS05] with aoddthr automatic crack detection
using mathematical morphology and linear filters. We intrwel mathematical morphology
and linear filters as tools for image processing in the dorofarack detection.

The presented approach has three steps. First the contithst image is enhanced and noise
is reduced. In the second step the cracks in the image areaegthaThe Laplacian of Gaus-
sian linear filter is used as a simple edge detection to fidlyasate the foreground from the
background. In the last step a set of alternating morpho&dilters is applied to the image.
Afterwards everything in the image that is below a given shadd is considered to be a crack
and thus we have a binary crack map that tells us for everyt gikebelongs to a crack (dark
pixel) or not (bright pixel).

The results mentioned in the paper are promising. They ¢leather mentioned methods such
as Otsu’s thresholding and Canny’s edge detection. It hbs &iated that with reasonable ef-
forts basic results from the algorithm could be reprodudstause of the lack of a comparable
image database and the needed parameters the results obbklneproduced in full.

The discussed paper ([IS05] by lyer and Sinha) is very closbd paper [ZK01] by Zana and
Klein. The described methods are the same used for bothkscea retinal blood vessels.
After all it seems that [ISO5] was written pretty quickly whicould explain the smaller and
bigger errors that are in the paper.

In the discussion of the paper the question came up, if matieahmorphology is a worthwhile
field of research for automatic crack detection. Since gesdlts could be achieved after just
a few hours of coding it seems promising that with more finerntgmathematical morphology
can produce adequate results. But in any case it is neededtpace the approach to modern
(and often computationally expensive) methods to be aliestke a justified decision.
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